Preview

Head and Neck Tumors (HNT)

Advanced search

Markers of oncological prognosis in the surgical treatment of oral squamous cell carcinoma

https://doi.org/10.17650/2222-1468-2023-13-4-58-64

Abstract

   The progression of head and neck squamous cell cancer (HNSCC) may be influenced by the characteristics of the local and systemic immune response, including the peculiarities of systemic inflammatory response during surgical interventions. The dependence of the prognosis of cancer patients on the preoperative general somatic status and postoperative complications is demonstrated precisely through the prism of a systemic inflammation development promoting the progression of oncological process. It is necessary to study the interaction of a typical inflammatory reaction and the features of reparative processes to understand the correct treatment strategy for patients with oral cancer in the conditions of the existing oncological process. It was found that chronization of inflammation is associated with m2-macrophage polarization which contributes to the tumor progression. And systemic inflammation indices correlate with treatment results. It is also necessary to identify prognostic factors of postoperative complications that affect the chronization of inflammation. They may include the general somatic and nutritional status of patients, concomitant diseases and indices of systemic inflammation. It is obvious that improving the results of surgical treatment of patients with oral cancer can be influenced by various ways of managing the inflammatory response, including the peculiarities of performing the reconstructive interventions and improving the preoperative general somatic and nutritional status.

About the Authors

A. I. Stukan
Kuban State Medical University, Ministry of Health of the Russia; N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Anastasia Igorevna Stukan

350063; 4 Mitrofana Sedina St.; 197758; 68 Leningradskaya St.; Krasnodar; Saint Petersburg; Pesochny



D. E. Kulbakin
Scientific Research Institute of Oncology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

634009; 5 Kooperativny Line; Tomsk



T. Y. Semiglazova
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia; I.I. Mechnikov Northwestern State Medical University, Ministry of Health of Russia
Russian Federation

197758; 68 Leningradskaya St.; 191015; 41 Kirochnaya St.; Saint Petersburg; Pesochny



Ya. V. Shvaykovskaya
Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

350040; 146 Dimitrova St.; Krasnodar



E. A. Nefedova
Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

350040; 146 Dimitrova St.; Krasnodar



I. I. Aseeva
Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

350040; 146 Dimitrova St.; Krasnodar



References

1. Cho S.K., Mattke S., Gordon H. et al. Development of a model to predict healing of chronic wounds within 12 weeks. Adv Wound Care (New Rochelle) 2020;9(9):516–24. DOI: 10.1089/wound.2019.1091

2. Chen L., Arbieva Z.H., Guo S. et al. Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 2010;11:471. DOI: 10.1186/1471-2164-11-471

3. Turabelidze A., Guo S., Chunget Y.A. et al. Intrinsic differences between oral and skin keratinocytes. PLOS One 2014;9(9):e101480. DOI: 10.1371/journal.pone.0101480

4. Toma A.I., Fuller J.M., Willettet N.J. et al. Oral wound healing models and emerging regenerative therapies. Transl Res 2021;236:17–34. DOI: 10.1016/j.trsl.2021.06.003

5. Politis P., Schoenaers J., Jacobs R. et al. Wound healing problems in the mouth. Front Physiol 2016;7:507. DOI: 10.3389/fphys.2016.00507

6. Funato N., Moriyama K., Baba Y. et al. Evidence for apoptosis induction in myofibroblasts during palatal mucoperiosteal repair. J Dent Res 1999;78(9):1511–7. DOI: 10.1177/00220345990780090501

7. Eming S.A., Hammerschmidt M., Krieg T. et al. Interrelation of immunity and tissue repair or regeneration. Semin Cell Dev Biol 2009;20:517–27. DOI: 10.1016/j.semcdb.2009.04.009

8. Des Jardins-Park H., Mascharak Sh., Chinta M.S. et al. The spectrum of scarring in craniofacial wound repair. Front Physiol 2019;10:322. DOI: 10.3389/fphys.2019.00322

9. Boscolo-Rizzo P., D’Alessandro A., Polesel J. et al. Different infammatory blood markers correlate with specific outcomes in incident HPV-negative head and neck squamous cell carcinoma : a retrospective cohort study. BMC Cancer 2022;22(1):243. DOI: 10.1186/s12885-022-09327-4

10. Velnar T., Bailey T., Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 2009;37(5):1528–42. DOI: 10.1177/147323000903700531

11. Schultz G.S., Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 2009;17(2):153–62. DOI: 10.1111/j.1524-475X.2009.00466.x

12. Lobmann R., Schultz G., Lehnert H. Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care 2005;28(2):461–71. DOI: 10.2337/diacare.28.2.461

13. Yamagata K., Fukuzawa S., Ishibashi-Kanno N. et al. Association between the C-reactive protein/albumin ratio and prognosis in patients with oral squamous cell carcinoma. Scientific Rep 2021;11(1):5446. DOI: 10.1038/s41598-021-83362-2

14. Gabrilovich D.G., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009;9(3):162–74. DOI: 10.1038/nri2506

15. Li D., Wang Ch., Wei W. et al. Postoperative complications of free flap reconstruction in moderate-advanced head and neck squamous cell carcinoma: a prospective cohort study based on real-world data. Front Oncol 2022;12:792462. DOI: 10.3389/fonc.2022.792462

16. Lin P.C., Kuo P.J., Kuo S.Ch. et al. Risk factors associated with postoperative complications of free anterolateral thigh flap placement in patients with head and neck cancer: analysis of propensity score-matched cohorts. Microsurgery 2020;40(5):538–44. DOI: 10.1002/micr.30587

17. Spanier G., Böttcher J., Gerken M. et al. Prognostic. Value of perioperative red blood cell transfusion and anemia on survival and recurrence in oral squamous cell carcinoma. Oral Oncol 2020;107:104773. DOI: 10.1016/j.oraloncology.2020.104773

18. Giannoudis P.V., Smith M.R., Evans R.T. et al. Serum CRP and IL-6 levels after trauma: not predictive of septic complications in 31 patients. Acta Orthop Scand 1998;69(2):184–8. DOI: 10.3109/17453679809117625

19. Khandavilli S.D., Ceallaigh P.O., Lloyd C.J. et al. Serum C-reactive protein as a prognostic indicator in patients with oral squamous cell carcinoma. Oral Oncol 2009;45(10):912–4. DOI: 10.1016/j.oraloncology.2009.03.015

20. Kruse A.L., Luebbers H.T., Gratz K.W. C-reactive protein levels: a prognostic marker for patients with head and neck cancer? Head Neck Oncol 2010;2:21. DOI: 10.1186/1758-3284-2-21

21. Lee S., Kim D.W., Kwon S. Prognostic value of systemic inflammatory markers for oral cancer patients based on the 8<sup>th</sup> edition of AJCC staging system. Sci Rep 2020;10(1):12111. DOI: 10.1038/s41598-020-68991-3

22. Diao P., Wu Y., Li J. et al. Preoperative systemic immune-inflammation index predicts prognosis of patients with oral squamous cell carcinoma after curative resection. J Transl Med 2018;16:365. DOI: 10.1186/s12967-018-1742-x

23. Kao S.C., Pavlakis N., Harvie R. et al. High blood neutrophil-to-lymphocyte ratio is an indicator of poor prognosis in malignant mesothelioma patients undergoing systemic therapy. Clin Cancer Res 2010;16(23):5805–13. DOI: 10.1158/1078-0432.CCR-10-2245

24. Ong H.S., Gokavarapu S., Wang L.Z. et al. Low pretreatment lymphocyte-monocyte ratio and high platelet-lymphocyte ratio indicate poor cancer outcome in early tongue cancer. J Oral Maxillofac Surg 2017;75(8):1762–74. DOI: 10.1016/j.joms.2016.12.023

25. Mattavelli D., Lombardi D., Missale F. et al. Prognostic nomograms in oral squamous cell carcinoma: The negative impact of low neutrophil to lymphocyte ratio. Front Oncol 2019;9:339. DOI: 10.3389/fonc.2019.00339

26. Liu X., Sun X., Liu J. et al. Preoperative C-reactive protein/albumin ratio predicts prognosis of patients afer curative resection for gastric cancer. Transl Oncol 2015;8(4):339–45. DOI: 10.1016/j.tranon.2015.06.006

27. Kutukova S.I., Belyak N.P., Ivaskova Yu.V. The prognostic role of systemic inflammation factors in the course of squamous cell carcinoma of the oral mucosa. Medicinskij alfavit = Medical Alphabet 2021;10:28–34. (In Russ.). DOI: 10.33667/2078-5631-2021-10-28-34

28. Kutukova S.I., Belyak N.P., Ivaskova Yu.V. Systemic inflammation during adenogenic cancer of the salivary glands. Uchenye zapiski Pervogo Sankt-Peterburgskogo gosudarstvennogo medicinskogo universiteta imeni akademika I.P. Pavlova = The Scientific Notes of the Pavlov University 2022;29(3):74–80. (In Russ.). DOI: 10.24884/1607-4181-2022-29-3-74-80

29. Kudou K., Saeki H., Nakashima Y. et al. C-reactive protein/albuminratio is a poor prognostic factor of esophagogastric junction and upper gastric cancer. J Gastroenterol Hepatol 2019;34(2): 355–63. DOI: 10.1111/jgh.14442

30. Crumley A.B.C., Stuart R.C., McKernan M. et al. Is hypoalbuminemia an independent prognostic factor in patients with gastric cancer? World J Surg 2010;34(10):2393–8. DOI: 10.1007/s00268-010-0641-y

31. Takebe J., Champagne C.M., Offenbacher Ishibashi S.K. et al. Titanium surface topography alters cell shape and modulates bone morphogenetic protein 2 expression in the J774A.1 macrophage cell line. J Biomed Mater Res Part A 2003;64(2):207–16. DOI: 10.1002/jbm.a.10275

32. Laschke M.W., Harder Y., Amon M. et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 2006;12(8):2093–104. DOI: 10.1089/ten.2006.12.2093

33. Kuboki Y., Jin Q., Kikuchi M. et al. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res 2002; 43(2–3):529–34. DOI: 10.1080/03008200290001104

34. Wu G., Liu Y., Iizuka T. et al. The effect of a slow mode of BMP-2 delivery on the inflammatory response provoked by bone-defect-filling polymeric scaffolds. Biomaterials 2010;31(29):7485–93. DOI: 10.1016/j.biomaterials.2010.06.037

35. Suarato G., Bertorelli R., Athanassiou A. Borrowing from nature: biopolymers and biocomposites as smart wound care materials. Front Bioeng Biotechnol 2018;6:137. DOI: 10.3389/fbioe.2018.00137

36. Refai A.K., Textor M., Brunette D.M. et al. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A 2004;70(2):194–205. DOI: 10.1002/jbm.a.30075

37. Mendonça G., Mendonça D.B., Aragão F.J. et al. Advancing dental implant surface technology – from micron- to nanotopography. Biomaterials 2008;29(28):3822–35. DOI: 10.1016/j.biomaterials.2008.05.012

38. Ma Q.L., Zhao L.Z., Liu R.R. et al. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 2014;35(37):9853–67. DOI: 10.1016/j.biomaterials.2014.08.025

39. Paul N.E., Skazik C., Harwardt M. et al. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 2008;29(30):4056–64. DOI: 10.1016/j.biomaterials.2008.07.010

40. Jones J.A., Chang D.T., Meyerson H. et al. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. Biomed Mater Res Part A 2007;83(3):585–96. DOI: 10.1002/jbm.a.31221

41. Yun J.K., DeFife K., Colton E. et al. Human monocyte/macrophage adhesion and cytokine production on surface-modified poly(tetrafluoroethylene/hexafluoropropylene) polymers with and without protein preadsorption. J Biomed Mater Res 1995;29(2):257–68. DOI: 10.1002/jbm.820290217

42. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958–69. DOI: 10.1038/nri2448

43. Arnold L., Henry A., Poron F. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007;204(5): 1057–69. URL: https://www.researchgate.net/publication/6344940_Inflammatory_monocytes_recruited_after_skeletal_muscle_injury_switch_into_antiinflammatory_macrophages_to_support_myogenesis

44. Kim S.G. Immunomodulation for maxillofacial reconstructive surgery Kim Maxillofac Plast Reconstr Surg 2020;42(1):5. DOI: 10.1186/s40902-020-00249-4


Review

For citations:


Stukan A.I., Kulbakin D.E., Semiglazova T.Y., Shvaykovskaya Ya.V., Nefedova E.A., Aseeva I.I. Markers of oncological prognosis in the surgical treatment of oral squamous cell carcinoma. Head and Neck Tumors (HNT). 2023;13(4):58-64. (In Russ.) https://doi.org/10.17650/2222-1468-2023-13-4-58-64

Views: 320


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)