Successful targeted therapy in treatment of non-resectable refractory squamous cell cancer of nasal cavity with mutation in PTCH1 gene
- Authors: Mudunov A.M.1,2, Khabazova A.M.3, Pak M.B.3, Berelavichus S.V.3, Chen H.4
-
Affiliations:
- Clinical Hospital “Lapino” of the “Mother and Child” Group of companies
- Sechenov University, Ministry of Health of Russia
- Specialized Medical Center of the Bank of Russia
- Beijing Chao-Yang hospital, Capital Medical University
- Issue: Vol 15, No 3 (2025)
- Pages: 115-123
- Section: CASE REPORT
- Published: 03.11.2025
- URL: https://ogsh.abvpress.ru/jour/article/view/1110
- DOI: https://doi.org/10.17650/2222-1468-2025-15-3-115-123
- ID: 1110
Cite item
Abstract
Cancer of the nasal mucosa is a malignant tumor originating from the mucous epithelium of the nasal cavity or paranasal sinuses. Nasal and paranasal sinus cancer accounts for 1.4 % of all malignancies and 3–5 % of head and neck tumors. males are twice as likely to be affected as females, particularly those aged 55 years and older (nearly 80 % of cases). The five-year survival rate is 8 2 % in patients with stage I disease and 43 % in patients with stage Iv disease. Despite the advances in the diagnosis of nasal cancer, over 80 % of new patients are diagnosed with stage III–Iv disease because of nonspecific symptoms in early (I and II) stages. Traditional treatment methods (including surgery, radiation therapy and chemotherapy) often allow us to achieve complete recovery in patients with this disorder. However, in most patients with locally advanced cancer, this approach has a limited effectiveness and is often associated with severe side effects. Considering frequent progression of nasal squamous cell carcinomas on standard regimens, it is necessary to search for new treatment targets to improve outcomes. Extensive molecular testing using multigenic panels based on next-generation sequencing can be helpful in this case. The most common mutations in nasal cancers occur in five genes: TP53 (up to 80 % of cases), EGFR (up to 77 % of cases), IDH2 (approximately 55 % of cases), PIK3CA (14 % of cases), and CDKN2A (9 % of cases). we report a case of successful treatment of a patient with locally advanced, non-resectable, drug-resistant nasal squamous cell carcinoma with a rare driver mutation.
About the authors
A. M. Mudunov
Clinical Hospital “Lapino” of the “Mother and Child” Group of companies; Sechenov University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-0918-3857
111 1st Uspenskoe Shosse, Lapino, Moscow Region 143081
Bld. 2, 8 Trubetskaya St., Moscow 119991
Russian FederationA. M. Khabazova
Specialized Medical Center of the Bank of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-9372-3328
66 Sevastopolsky Prospekt, 116152 Moscow
Russian FederationM. B. Pak
Specialized Medical Center of the Bank of Russia
Author for correspondence.
Email: mbpak@yandex.ru
ORCID iD: 0000-0003-4546-0011
Maxim Bokmanovich Pak
66 Sevastopolsky Prospekt, 116152 Moscow
Russian FederationS. V. Berelavichus
Specialized Medical Center of the Bank of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-8727-6111
66 Sevastopolsky Prospekt, 116152 Moscow
Russian FederationH. Chen
Beijing Chao-Yang hospital, Capital Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0001-7690-731X
8 South Gongren Gymnasium Road, Chaoyang District, Beijing 100006
ChinaReferences
- Malignant neoplasms in Russia in 2023 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024. 275 p. (In Russ.).
- Key statistics about nasal cavity and paranasal sinus cancers. American Cancer Society. Available at: https://www.cancer.org/cancer/types/nasal-cavity-and-paranasal-sinus-cancer/about/keystatistics.html
- Bray F., Ferlay J., Soerjomataram I. et al. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424. doi: 10.3322/caac.21492
- Pecorari G., Motatto G., Piazza F. et al. Real-life prognosis of sinonasal tumors. J of Pers Med 202;14(5):444. doi: 10.3390/jpm14050444
- Brierly J.D. TNM: classification of malignant tumors. Moscow: Logosphere, 2018. 344 p. (In Russ.).
- Malignant tumors of the sinuses. Medscape. Available at: https:// emedicine.medscape.com/article/847189-overview
- Treatment of nasal cavity and paranasal sinus cancers, by type and stage. Available at: https://www.cancer.org/cancer/types/nasalcavity-and-paranasal-sinus-cancer/treating/by-stage.html
- Chalmers Z., Connelly C., Fabrizio D. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 2017;9(1):34. doi: 10.1186/s13073-017-0424-2
- Martínez J., Pérez-Escuredo J., López F. et al. Microsatellite instability analysis of sinonasal carcinomas. Otolaryngol Head Neck Surg 2009;140(1):55–60. doi: 10.1016/j.otohns.2008.10.038
- Park J., Faquin W., Durbeck J. et al. Immune checkpoint inhibitors in sinonasal squamous cell carcinoma. Oral Oncol 2020;109:104776. doi: 10.1016/j.oraloncology.2020.104776
- Bracigliano A., Tatangelo F., Perri F. et al. Malignant sinonasal tumors: update on histological and clinical management. Curr Oncol 2021;28(4):2420–38. doi: 10.3390/curroncol28040222
- Taverna C., Agaimy A., Franchi A. Towards a molecular classification of sinonasal carcinomas: clinical implications and opportunities. Cancers 2022;14(6):1463. doi: 10.3390/cancers14061463
- Jo V., Chau N., Hornick J. et al. Recurrent IDH2 R172X mutations in sinonasal undifferentiated carcinoma. Mod Pathol 2017;30(5):650–9. doi: 10.1038/modpathol.2016.239
- Bitar G., Alshaka S., Hsia B. Comprehensive genomic profiling of sinonasal carcinomas: identification of common mutations and potential targets for therapy. J Neurol Surg B Skull Base 2025. doi: 10.1055/a-2639-5790
- Speel E. HPV integration in head and neck squamous cell carcinomas: cause and consequence. Recent Results Cancer Res 2017;206:57–72. doi: 10.1007/978-3-319-43580-0_4
- Lee D.-H., Lee S., Oh S. Hedgehog signaling pathway as a potential target in the treatment of advanced gastric cancer. Tumor Biol 2017;39(6):1010428317692266. doi: 10.1177/1010428317692266
- Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015;517(7536):576–82. doi: 10.1038/nature14129
- Stransky N., Egloff A., Tward A. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011;333(6046):1157–60. doi: 10.1126/science.1208130
- Agrawal N., Frederick M., Pickering C. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011;333(6046):1154–7. doi: 10.1126/science.1206923
- Leović M., Jakovčević A., Mumlek I. et al. A pilot immunohistochemical study identifies hedgehog pathway expression in sinonasal adenocarcinoma. Int J Mol Sci 2024;25(9):4630. doi: 10.3390/ijms25094630
- Hoff D., LoRusso P., Rudin C. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 2009;361(12):1164–72. doi: 10.1056/NEJMoa0905360
- ERIVANCE phase II pivotal trial design. ERIVANCE: The pivotal trial that demonstrated clinically meaningful benefit in advanced BCC. Available at: https://www.erivedge.com/hcp/efficacy/clinicalresults.html
- Dréno B., Kunstfeld R., Hauschild A. et al. Two intermittent vismodegib dosing regimens in patients with multiple basal-cell carcinomas (MIKIE): a randomised, regimen-controlled, doubleblind, phase 2 trial. Lancet Oncol 2017;18(3):404–12. doi: 10.1016/S1470-2045(17)30072-4
- Beatty G., Gladney W. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 2014;21(4):687–92. doi: 10.1158/1078-0432.CCR-14-1860
- Migden M., Guminski A., Gutzmer R. et al. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial. Lancet Oncol 2015;16(6):716–28. doi: 10.1016/S1470-2045(15)70100-2
- Basset-Seguin N., Maubec E. Recent advanced in the treatment of advanced SCC tumors. Cancers (Basel) 2022;14(3):550. doi: 10.3390/cancers14030550
- Buonamici S., Williams J., Morrissey M. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Scie Transl Med 2010;2(51):51ra70. doi: 10.1126/scitranslmed.3001599
- Kim J., Aftab B., Tang J. et al. Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 2013;23(1):23–34. doi: 10.1016/j.ccr.2012.11.017
- Dorywalska M., Dushin R., Moine L. et al. Molecular basis of valine-citrulline-PABC Linker Instability in Site-Specific ADCs and its mitigation by linker design. Mol Cancer Ther 2016;15(5):958–70. doi: 10.1158/1535-7163.MCT-15-1004
- Bakshi A., Chaudhary S., Rana M. et al. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog 2017;56(12):2543–57. doi: 10.1002/mc.22690
- Pastorino L., Pollio A., Pellacani G. et al. Novel PTCH1 mutations in patients with keratocystic odontogenic tumors screened for nevoid basal cell carcinoma (NBCC) syndrome. PLoS One 2012;7(8):e43827. doi: 10.1371/journal.pone.0043827
Supplementary files


