Oral microbiota in patients with oropharyngeal cancer with an emphasis on Candida spp.
- Authors: Bagirova N.S.1, Petukhova I.N.1, Grigorievskaya Z.V.1, Sytov A.V.1, Slukin P.V.2, Goremykina E.A.2,3, Khokhlova O.E.2,3, Fursova N.K.2,3, Kazimov A.E.1
-
Affiliations:
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor
- Pushchinsky State Natural Science Institute
- Issue: Vol 12, No 3 (2022)
- Pages: 71-85
- Section: ORIGINAL REPORT
- Published: 14.10.2022
- URL: https://ogsh.abvpress.ru/jour/article/view/816
- DOI: https://doi.org/10.17650/2222-1468-2022-12-3-71-85
- ID: 816
Cite item
Full Text
Abstract
Introduction. Interactions between the 2 microbiota components – bacteria and fungi – are of interest as diagnostic and prognostic markers in selection of treatment tactics for oncological patients.
Aim. To study microbiota of the oral cavity in patients with primary squamous cell carcinoma of the oropharyngeal area before and after surgical intervention to find biomarkers for rational selection of antifungal drugs.
Materials and methods. At the Surgical Department of Head and Neck Tumors of the N. N. Blokhin National Research Center of Oncology, three-component study was performed: investigations of spectrum of Candida spp. isolates, Candida spp. strains’ resistance to antifungals, and oral washes in primary patients before and after surgery. mALDI-Tof microflex LT (Biotyper, Bruker Daltonics, germany) was used for strain identification; Sensititre Yeast ONE, YO10 (Trek Diagnostic System, united kingdom) plates were used for determination of minimal inhibiting concentrations of anti fungals. values of minimal inhibiting concentrations were evaluated based on the European Committee on Antimicrobial Susceptibility Testing (EuCAST) criteria (version 10.0).
Results. four-year observation of patients at the surgical department of head and neck tumors of the N. N. Blokhin National Research Center of Oncology showed that the most common species of Candida is C. albicans (73.5 % of cases). Candida spp. resistance to antifungals was detected only for fluconazole (9.3 % of cases) and micafungin (8.0 % of cases), mostly among C. albicans strains. In 31.8 % of primary patients, oral washes prior to surgery showed growth of Candida spp. (probably, tissue colonization). After surgical intervention, Candida spp. growth was detected in 36.4 % of cases, only 1 of which was diagnosed as invasive mycosis. In 54.5 % of cases before and in 72.7 % of cases after surgery, gram-negative rods were detected. After surgical intervention, percentage of enterobacteria and non-fermenters significantly increased: 59.1 % versus 27.3 % (p <0.05) and 63.6 % versus 27.3 % (p <0.02), respectively. prior to surgery, non-fermenting gram-negative bacteria were represented only by P. aeruginosa; after surgery, the spectrum of non-fermenting gram-negative bacteria became wider but percentage of P. aeruginosa remained high: 71.4 %. ERG11 gene was identified only in 1 strain: C. albicans. FKS1 gene also was identified only in 1 strain: C. inconspicua. virulence factor genes were detected in 57.1 % of strains.
Conclusion. Surgical intervention is associated with changes in bacterial microbiota but not fugal microbiota. presence of virulence factor genes and resistance genes in Candida spp. strains should be considered a biomarker allowing to differentiate between colonization and candida infection and can be used for rational selection of antifungal drugs in prevention and treatment of invasive candidiasis, especially in the absence of criteria for interpretation of measured minimal inhibiting concentrations of antifungals.
About the authors
N. S. Bagirova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Author for correspondence.
Email: nbagirova@mail.ru
ORCID iD: 0000-0003-1405-3536
Nataliya Sergeevna Bagirova
24 Kashirskoe Shosse, Moscow 115522
Russian FederationI. N. Petukhova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-3077-0447
24 Kashirskoe Shosse, Moscow 115522
Russian FederationZ. V. Grigorievskaya
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-4294-1995
24 Kashirskoe Shosse, Moscow 115522
Russian FederationA. V. Sytov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-6426-3200
24 Kashirskoe Shosse, Moscow 115522
Russian FederationP. V. Slukin
State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor
Email: fake@neicon.ru
ORCID iD: 0000-0002-4976-0145
24 Territory of “Quarter A”, Moscow Region, village Obolensk 142279
Russian FederationE. A. Goremykina
State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
Email: fake@neicon.ru
ORCID iD: 0000-0002-2374-3646
24 Territory of “Quarter A”, Moscow Region, village Obolensk 142279
3 Prospekt Nauki, Moscow Region, Pushchino 142290
Russian FederationO. E. Khokhlova
State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
Email: fake@neicon.ru
ORCID iD: 0000-0002-2829-5117
24 Territory of “Quarter A”, Moscow Region, village Obolensk 142279
3 Prospekt Nauki, Moscow Region, Pushchino 142290
Russian FederationN. K. Fursova
State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
Email: fake@neicon.ru
ORCID iD: 0000-0001-6053-2621
24 Territory of “Quarter A”, Moscow Region, village Obolensk 142279
3 Prospekt Nauki, Moscow Region, Pushchino 142290
Russian FederationA. E. Kazimov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-7117-9453
24 Kashirskoe Shosse, Moscow 115522
Russian FederationReferences
- Cheung M.K., Chan J.Y.K., Wong M.C.S. et al. Determinants and interactions of oral bacterial and fungal microbiota in healthy chinese adults. Microbiol Spectr 2022;10(1):e0241021. doi: 10.1128/spectrum.02410-21
- Nearing J.T., DeClercq V., Van Limbergen J., Langille M.G.I. Assessing the variation within the oral microbiome of healthy adults. mSphere 2020;5(5):e00451–20. doi: 10.1128/mSphere.00451-20
- Chattopadhyay I., Verma M., Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol Cancer Res Treat 2019:18:1533033819867354. doi: 10.1177/1533033819867354
- Zakaria M.N., Furuta M., Takeshita T. et al. Oral mycobiome in community-dwelling elderly and its relation to oral and general health conditions. Oral Dis 2017;23(7):973–82. DOI:10.1111/ odi.12682
- Fidel P.L., Thompson Z.A., Lilly E.A. et al. Effect of HIV/HAART and other clinical variables on the oral mycobiome using multivariate analyses. mBio 2021;23;12(2):e00294–21. doi: 10.1128/mBio.00294-21
- Mukherjee P.K., Wang H., Retuerto M. Bacteriome and mycobiome associations in oral tongue cancer. Oncotarget 2017;8(57): 97273–89. doi: 10.18632/oncotarget.21921
- Sokol H., Leducq V., Aschard H. et al. Fungal microbiota dysbiosis in IBD. Gut 2017;66(6):1039–48. doi: 10.1136/gutjnl-2015-310746
- Shay E., Sangwan N., Padmanabhan R. et al. Bacteriome and mycobiome and bacteriome-mycobiome interactions in head and neck squamous cell carcinoma. Oncotarget 2020;11(25):2375–86. doi: 10.18632/oncotarget.27629
- Cannon R.D. Oral fungal infections: past, present, and future. Front Oral Health 2022;3:838639. doi: 10.3389/froh.2022.838639
- Hayes R.B., Ahn J., Fan X. et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol 2018;4(3):358–65. doi: 10.1001/jamaoncol.2017.4777
- Vallianou N., Kounatidis D., Christodoulatos G.S. et al. Mycobiome and cancer: what is the evidence? Cancers (Basel) 2021;13(13):3149. doi: 10.3390/cancers13133149
- Sung. H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3): 209–49. doi: 10.3322/caac.21660
- Huët M.A.L., Lee C.Z., Rahman S. A review on association of fungi with the development and progression of carcinogenesis in the human body. Curr Res Microb Sci 2021;3:100090. doi: 10.1016/j.crmicr.2021.100090
- Bentz M.L., Sexton D.J., Welsh R.M., Litvintseva A.P. Phenotypic switching in newly emerged multidrug-resistant pathogen Candida auris. Med Mycol 2019;57(5):636–8. doi: 10.1093/mmy/myy100
- De Jong A.W., Hagen F. Attack, defend and persist: how the fungal pathogen Candida auris was able to emerge globally in healthcare environments. Mycopathologia 2019;184(3):353–65. doi: 10.1007/s11046-019-00351-w
- Young T., Alshanta O.A., Kean R., Bradshaw D. et al. Candida albicans as an essential “keystone” component within polymicrobial oral biofilm models? Microorganisms 2020;9(1):59. doi: 10.3390/microorganisms9010059
- Diaz P.I., Dongari-Bagtzoglou A. Critically appraising the significance of the oral mycobiome. J Dent Res 2021;100(2):133–40. doi: 10.1177/0022034520956975
- Xu H., Sobue T., Thompson A. et al. Streptococcal co-infection augments candida pathogenicity by amplifying the mucosal inflammatory response. Cell Microbiol 2014;16(2):214–31. doi: 10.1111/cmi.12216
- Xu H., Sobue T., Bertolini M. et al. Streptococcus oralis and Candida albicans synergistically activate μcalpain to degrade E-cadherin from oral epithelial junctions. J Infect Dis 2016;214(6):925–34. doi: 10.1093/infdis/jiw201
- Xu H., Sobue T., Bertolini M. et al. S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms. Virulence 2017;8(8):1602–17. doi: 10.1080/21505594.2017.1326438
- Bertolini M., Ranjan A., Thompson A. et al. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog 2019;15(4):e1007717. doi: 10.1371/journal.ppat.1007717
- Perera M., Al-Hebshi N.N., Perera I. et al. A dysbiotic mycobiome dominated by Candida albicans is identified within oral squamouscell carcinomas. J Oral Microbiol 2017;9(1):1385369. doi: 10.1080/20002297.2017.1385369
- Vesty A., Gear K., Biswas K. et al. Microbial and inflammatorybased salivary biomarkers of head and neck squamous cell carcinoma. Clin Exp Dent Res 2018;28;4(6):255–62. doi: 10.1002/cre2.139
- Hettmann A., Demcsák A., Decsi G. et al. Infectious agents associated with head and neck carcinomas. Adv Exp Med Biol 2016;897:63–80. doi: 10.1007/5584_2015_5005
- Ramirez-Garcia A., Rementeria A., Aguirre-Urizar J.M. et al. Candida albicans and cancer: can this yeast induce cancer development or progression? Crit Rev Microbiol 2016;42(2):181–93. doi: 10.3109/1040841X.2014.913004
- Xu Y., Chen L., Li C. Susceptibility of clinical isolates of Candida species to fluconazole and detection of Candida albicans ERG11 mutations. J Antimicrob Chemother 2008;61(4):798–804. doi: 10.1093/jac/dkn015
- Kordalewska M., Lee A., Park S. et al. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob Agents Chemother 2018;62(6). doi: 10.1128/AAC.00238-18
- Shrief R., Sayed Zaki M.E., El-Sehsah E.M. et al. Study of antifungal susceptibility, virulence genes and biofilm formation in Candida albicans. Open Microbiol J 2019;13(1):241–8. doi: 10.2174/1874285801913010241
- Stehr F., Felk A., Gácser A. et al. Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res 2004;4(4–5):401–8. doi: 10.1016/S1567-1356(03)00205-8
- Kadry A.A., El-Ganiny A.M., El-Baz A.M. Relationship between Sap prevalence and biofilm formation among resistant clinical isolates of Candida albicans. Afr Health Sci 2018;18(4):1166–74. doi: 10.4314/ahs.v18i4.37
- Arendrup M.C., Friberg N., Mares M. et al. How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). Clin Microbiol Infect 2020;26(11):1464–72. doi: 10.1016/j.cmi.2020.06.007
- Pchelin I.M., Ryabinin I.A., Stashuk A.A. et al. ERG11 Genetic polymorphism in clinical isolates of Candida albicans: theoretical and practical aspects. Problemy medicinskoj mikologii = Problems of medical mycology 2020;22(3):36–42. (In Russ.). doi: 10.24412/1999-6780-2020-3-36-42
- Bhattacharya S., Sae-Tia S., Fries B.C. Candidiasis and mechanisms of Antifungal Resistance. Antibiotics (Basel) 2020;9(6):312. doi: 10.3390/antibiotics9060312
- Wang Z.K., Yang Y.S., Stefka A.T. et al. Review: fungal microbiota and digestive diseases. Aliment Pharmacol Ther 2014;39(8):751–66. doi: 10.1111/apt.12665
- Adam B., Baillie G.S., Douglas L.J. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 2002;51(4):344–9. doi: 10.1099/0022-1317-51-4-344
- Hogan D.A., Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 2002;296(5576):2229–32. doi: 10.1126/science.1070784
- Jabra-Rizk M.A., Meiller T.F., James.C.E., Shirtliff M.E. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 2006;50(4):1463–9. doi: 10.1128/AAC.50.4.1463-1469.2006
- Cugini C., Calfee M.W., Farrow J.M. et al. Farnesol, a common.sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 2007;65(4):896–906. doi: 10.1111/j.1365-2958.2007.05840.x
- Peleg A.Y., Tampakakis E., Fuchs B.B. et al. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA 2008;105(38):14585–90. doi: 10.1073/pnas.0805048105
- Jarosz L.M., Deng D.M., van der Mei H.C. et al. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell 2009;8(11):1658–64. doi: 10.1128/EC.00070-09
- Brehm-Stecher B.F., Johnson E.A. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 2003;47(10):3357–60. doi: 10.1128/AAC.47.10.33573360.2003
Supplementary files


