PD-L1 and p53 expression in squamous cell carcinoma of the oropharynx depending on human papilloma virus status

Cover Page

Cite item

Full Text

Abstract

Introduction. High-risk human papilloma virus (Hpv), especially genotype 16, causes oropharyngeal squamous cell carcinoma (OSCC). It is detected in about 70 % of tumors developing from lymphoid tissue of the tonsils or the base of the tongue. Due to the increased number of Hpv-positive OSCC, Hpv status is considered a marker of OSCC clinical outcome. Easy testing, low cost, reliability, and high sensitivity of immunohistochemical analysis for p16INk4a allowed to widely use this method for Hpv status determination.

Aim. To determine the association between programmed death-ligand 1 (pD-L1) and p53 expression and presence of indirect Hpv marker – p16INk4a – in patients with OSCC.

Materials and methods. The study included 76 patients with OSCC т1–4N0–3m0 who received treatment at the Republican Specialized Scientific and practical medical Center of Oncology and Radiology (n = 37) and its Tashkent branch (n = 39) between 2015 and 2020. for all selected patients, retrospective immunohistochemical analysis for the presence of p16INk4a, pD-L1 and р53 in  tumor  samples  fixed  with  formalin  in  paraffin  blocks  was  performed.  In  our  work,  immunohistochemical  examination for p16INk4a was the only relevant tool for Hpv status determination. To reinforce its prognostic significance, we used additional molecular markers pD-L1 and p53 which play an important role in carcinogenic transformation and OSCC progression.

Results. The results of immunohistochemical analysis showed that p16INk4a overexpression was accompanied by positive pD-L1 reaction in 46 % (6/13) of cases; there were no cases of positive expression of mutant type p53. wild type p53 was identified in only 1 (3 %) case in combination with p16INk4a overexpression.

Conclusion. The developed panel consisting of 3 molecular markers (p16INk4a, pD-L1 and р53) may open new horizons in accurate prognosis, risk stratification and understanding of OSCC molecular signature. This, in turn, will help clinicians in selection of individual therapy strategies for treatment de-escalation and outcome optimization.

About the authors

D. Sh. Polatova

Republican Specialized Scientific and Practical Medical Center of Oncology and Radiology; Tashkent State Dental Institute

Email: fake@neicon.ru
ORCID iD: 0000-0001-8128-2553

383 Farobi St., Tashkent 100174

103 Makhtumkuli St., Tashkent 100047

Uzbekistan

A. Yu. Madaminov

Tashkent State Dental Institute

Author for correspondence.
Email: akhmad.madaminov@inbox.ru
ORCID iD: 0000-0003-0064-3746

Akhmad Yuldashevich Madaminov

103 Makhtumkuli St., Tashkent 100047

Uzbekistan

A. V. Savkin

Tashkent State Dental Institute

Email: fake@neicon.ru
ORCID iD: 0000-0002-3416-5837

103 Makhtumkuli St., Tashkent 100047

Uzbekistan

A. I. Nurzhabov

Tashkent State Dental Institute

Email: fake@neicon.ru
ORCID iD: 0000-0002-8026-9944

103 Makhtumkuli St., Tashkent 100047

Uzbekistan

N. K. Asamedinov

Tashkent State Dental Institute

Email: fake@neicon.ru
ORCID iD: 0000-0001-5225-1539

103 Makhtumkuli St., Tashkent 100047

Uzbekistan

D. A. Ibragimova

Tashkent State Dental Institute

Email: fake@neicon.ru
ORCID iD: 0009-0000-4488-7270

103 Makhtumkuli St., Tashkent 100047

Uzbekistan

R. R. Davletov

Republican Specialized Scientific and Practical Medical Center of Oncology and Radiology

Email: fake@neicon.ru
ORCID iD: 0000-0002-9191-4128

383 Farobi St., Tashkent 100174

Uzbekistan

S. K. Nasirov

Tashkent Medical Academy

Email: fake@neicon.ru
ORCID iD: 0009-0005-1069-4645

2 Farobiy St., Tashkent 100109

Uzbekistan

References

  1. De Martel C., Georges D., Bray F. et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 2020;8(2):e180–90. doi: 10.1016/S2214-109X(19)30488-7
  2. Bravo I.G., Félez-Sánchez M. Papillomaviruses: viral evolution, cancer and evolutionary medicine. Evol Med Pub Health 2015;1:32–51. doi: 10.1093/emph/eov003
  3. Chaturvedi A.K., Engels E.A., Pfeiffer R.M. et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011;29(32):4294–301. doi: 10.1200/JCO.2011.36.4596
  4. Gillison M.L., Chaturvedi A.K., Anderson W. F., Fakhry C. Epidemiology of human papillomaviruspositive head and neck squamous cell carcinoma. J Clin Oncol 2015;33(29):3235–42. doi: 10.1200/JCO.2015.61.6995
  5. Gelwan E., Malm I.J., Khararjian A. et al. Nonuniform distribution of high-risk human papillomavirus in squamous cell carcinomas of the oropharynx: rethinking the anatomic boundaries of oral and oropharyngeal carcinoma from an oncologic HPV perspective. Am J Surg Pathol 2017;41(12):1722–8. doi: 10.1097/PAS.0000000000000929
  6. Castellsagué X., Alemany L., Quer M. et al. ICO international HPV in Head and Neck Cancer Study Group. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 Patients. J Natl Cancer Inst 2016;108(6):djv403. doi: 10.1093/jnci/djv403
  7. Carlander A.F., Jakobsen K.K., Bendtsen S.K. et al. A contemporary systematic review on repartition of HPV-positivity in oropharyngeal cancer worldwide. Viruses 2021;13:1326. doi: 10.3390/v13071326
  8. Berman T.A., Schiller J.T. Human papillomavirus in cervical cancer and oropharyngeal cancer: one cause, two diseases. Cancer 2017;123(12):2219–29. doi: 10.1002/cncr.30588
  9. Sinha P., Karadaghy O.A., Doering M.M. et al. Survival for HPV-positive oropharyngeal squamous cell carcinoma with surgical versus non-surgical treatment approach: a systematic review and meta-analysis. Oral Oncol 2018;86:121–31. doi: 10.1016/j.oraloncology.2018.09.018
  10. Lewis J.S., Beadle B., Bishop J.A. et al. Human papillomavirus testing in head and neck carcinomas: guideline from the College of American Pathologists. Arch Pathol Lab Med 2018;142(5): 559–97. doi: 10.5858/arpa.2017-0286-CP
  11. De la Iglesia J.V., Slebos R.J.C., Martin-Gomez L. et al. Effects of tobacco smoking on the tumor immune microenvironment in head and neck squamous cell carcinoma. Clin Cancer Res 2020;26(6):1474–85. doi: 10.1158/1078-0432.CCR-19-1769
  12. Budu V.A., Decuseară T., Balica N.C. et al. The role of HPV infection in oropharyngeal cancer. Rom J Morphol Embryol 2019;60(3):769–73.
  13. Dogan S., Xu B., Sumit Middha S. et al. Identification of prognostic molecular biomarkers in 157 HPV-positive and HPV-negative squamous cell carcinomas of the oropharynx. Int J Cancer 2019;145(11):3152–62.
  14. Wagner S., Prigge E.S., Wuerdemann N. et al. Evaluation of p16INK4a expression as a single marker to select patients with HPV-driven oropharyngeal cancers for treatment de-escalation. Br J Cancer 2020;123(7):1114–22. doi: 10.1038/s41416-020-0964-x
  15. Pkheshkhova B.G., Mudunov A.M., Azizyan R.I. et al. Estimation of the prevalence of Hpv-positive squamous cell carcinoma of the oropharynx on the example of a separate sample in the Russian federation. Opukholi golovy i shei = Head and Neck Tumors 2022;12(1):72–8. (In Russ.). doi: 10.17650/2222-1468-2022-12-1-72-78
  16. Serra S., Chetty R. p16. J Clin Pathol 2018;71(10):853–8. doi: 10.1136/jclinpath-2018-205216
  17. Kono T., Laimins L. Genomic instability and DNA damage repair pathways induced by human papillomaviruses. Viruses 2021;13(9):1821. doi: 10.3390/v13091821
  18. Lechner M., Liu J., Masterson L., Fenton T.R. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol 2022;19(5):306–27. doi: 10.1038/s41571-022-00603-7
  19. Hu J., Cao J., Topatana W., Juengpanich S. et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 2021;14(1):157. doi: 10.1186/s13045-021-01169-0
  20. Caponio V.C.A., Troiano G., Adipietro I. et al. Computational analysis of TP53 mutational landscape unveils key prognostic signatures and distinct pathobiological pathways in head and neck squamous cell cancer. Br J Cancer 2020;123(8):1302–14. doi: 10.1038/s41416-020-0984-6
  21. Mittal S., Banks L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat Res Rev 2017;772:23–35. doi: 10.1016/j.mrrev.2016.08.001
  22. Munari E., Mariotti F.R., Quatrini L. et al. PD-1/PD-L1 in cancer: pathophysiological, diagnostic and therapeutic aspects. Int J Mol Sci 2021;22:5123. doi: 10.3390/ijms22105123
  23. Salmaninejad A., Khoramshahi V., Azani A. et al. PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics 2017;70(2):73–86. doi: 10.1007/s00251-017-1015-5
  24. Steinbach A.,Riemer A.B. Immune evasion mechanisms of human papillomavirus: an update. Int J Cancer 2018;142(2):224–9. doi: 10.1002/ijc.31027
  25. Paolino G., Pantanowitz L., Barresi V. et al. PD-L1 evaluation in head and neck squamous cell carcinoma: Insights regarding specimens, heterogeneity and therapy. Pathol Res Pract 2021;226:153605. doi: 10.1016/j.prp.2021.153605
  26. Yang W.F., Wong M.C.M., Thomson P.J. et al. The prognostic role of PD-L1 expression for survival in head and neck squamous cell carcinoma: a systematic review and meta-analysis. Oral Oncol 2018;86:81–90. doi: 10.1016/j.oraloncology.2018.09.016
  27. Solomon B., Young R.J., Bressel M. et al. Prognostic significance of PD-L1(+) and CD8(+) immune cells in HPV(+) oropharyngeal squamous cell carcinoma. Cancer Immunol Res 2018;6(3):295– 304. doi: 10.1158/2326-6066.CIR-17-0299
  28. Lyford-Pike S., Peng S., Young G.D. et al. Evidence for a role of the PD-1: PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 2013;73(6):1733–41. doi: 10.1158/0008-5472.CAN-12-2384

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 36990 от  21.07.2009.