Reactive astrocytes and glioblastoma: are there new targets for more effective antitumor therapy?
- Authors: Tyagunova E.E.1, Dobrokhotova V.Z.1,2, Dushina A.O.3
-
Affiliations:
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
- N.N. Blokhin National Research Institute of Oncology, Ministry of Health of Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- Issue: Vol 13, No 2 (2023)
- Pages: 57-64
- Section: REVIEW
- Published: 13.09.2023
- URL: https://ogsh.abvpress.ru/jour/article/view/889
- DOI: https://doi.org/10.17650/2222-1468-2023-13-2-57-64
- ID: 889
Cite item
Full Text
Abstract
Introduction. Astrocytes in the brain of a healthy person perform a number of protective functions, contribute to maintaining the functional activity of neurons and their synapses. However, in some pathological conditions, they change their phenotype to a reactive one and can both remodel damaged areas and contribute to increased aggression and invasiveness of gliomas.
Aim. To comprehensively study the features of reactive astrocytes and the chemo- and radioresistance of gliomas associated with reactive astrocytes.
Materials and methods. The authors analyzed articles from the databases Elsevier, pubmed, Scopus, google Scholar, Embase, web of Science, The Cochrane Library, global Health, CyberLeninka and RSCI. when selecting articles, the indexing systems of journals and the citation of articles, the scientific novelty of research, the statistical significance of the results obtained in them were taken into account, publications with duplication of the results of previous studies were excluded. In the course of the study, data on the mutual influence of reactive astrocytes and glioma cells were systematized.
Results. Astrocytes of the brain of healthy people are highly variable and heterogeneous, which further complicates the interpretation of published studies. At the same time, reactive astrocytes contribute to an increase in the chemoresistance and radioresistance of gliomas of different degrees of malignancy. At the same time, the exact mechanisms for controlling the interaction between reactive astrocytes and glioma cells, which contributed to less progression and invasion of the tumor or its regression, have not yet been established. However, this direction is now actively developing and is promising due to the possibility of additional effects on gliomas.
Conclusion. At the moment, there is no effective treatment that can cope with gliomas, all existing treatment methods are aimed only at increasing the life expectancy of patients with gliomas. The results of recent studies suggest that, probably, the current insufficient effectiveness of chemo- and radiotherapy may be associated with a very close relationship between tumor cells and tumor-associated reactive astrocytes due to their mutual supportive effect. Therefore, the solution to the problem of incurable patients with gliomas may lie in a complex effect on both tumor cells and their microenvironment.
About the authors
E. E. Tyagunova
Sechenov First Moscow State Medical University, Ministry of Health of Russia
Author for correspondence.
Email: katerina.tyagunova@yandex.ru
ORCID iD: 0000-0002-5074-6391
Ekaterina Evgenievna Tyagunova
Bld. 2, 8 Trubetskaya St., Moscow119991
Russian FederationV. Z. Dobrokhotova
Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.N. Blokhin National Research Institute of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-5889-392X
Bld. 2, 8 Trubetskaya St., Moscow119991
24 Kashirskoe Shosse, Moscow 115522
Russian FederationA. O. Dushina
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: fake@neicon.ru
ORCID iD: 0000-0001-8296-6172
31 Kashirskoe Shosse, Moscow 115409
Russian FederationReferences
- Brotchi J., Bonnal J., Gerebtzoff M.A. Astroblaste tumoral et astrocyte réactionnel: distinction histochimique par l’activité de la déshydrogénase du glutamate. Neurochirurgie 1972;18(2):150–4.
- Brotchi J. Astrocytes réactionnels et épilepsie. Acta Neurol Belg 1972;72(3):137–45.
- Van Meir E.G., Hadjipanayis C.G., Norden A.D. et al. Exciting new advances in neuro-oncology. CA Cancer J Clin 2010;60(3):166–93. doi: 10.3322/caac.20069
- Tyagunova E.E., Zakharov A.S., Glukhov A.I. et al. Features of epileptiform activity in patients with diagnosed glioblastoma: from genetic and biochemical mechanisms to clinical aspects. Opukholi golovy i shei = Head and Neck Tumors 2022;12(3):102–13. (In Russ.). doi: 10.17650/2222-1468-2022-12-3-102-113
- Darmanis S., Sloan S.A., Croote D. et al. Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 2017;21(5):1399–410. doi: 10.1016/j.celrep.2017.10.030
- Zhang L., Zhang Y. Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci Bull 2015;31(3):371–8. doi: 10.1007/s12264-014-1522-4
- Umare M.D., Wankhede N.L., Bajaj K.K. et al. Interweaving of reactive oxygen species and major neurological and psychiatric disorders. Ann Pharm Fr 2022;80(4):409–25. doi: 10.1016/j.pharma.2021.11.004
- Liddelow S.A., Barres B.A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 2017;46(6):957–67. doi: 10.1016/j.immuni.2017.06.006
- Heiland H.D., Ravi V.M., Behringer S.P. et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 2019;10(1):2541. doi: 10.1038/s41467-019-10493-6
- Shlapakova T.I., Kostin R.K., Tyagunova E.E. Reactive oxygen species: participation in cellular processes and progression of pathology. Russian Journal of Bioorganic Chemistry 2020;46(5):657–74. doi: 10.1134/s1068162020050222
- Zhang Y., Chen K., Sloan S.A. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci 2014;34(36):11929–47. doi: 10.1523/JNEUROSCI.1860-14.2014
- Zhang Y., Sloan S.A., Clarke L.E. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 2016;89(1):37–53. doi: 10.1016/j.neuron.2015.11.013
- Liddelow S.A., Guttenplan K.A., Clarke L.E. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541(7638):481–7. doi: 10.1038/nature21029
- Zamanian J.L., Xu L., Foo L.C. et al. Genomic analysis of reactive astrogliosis. J Neurosci 2012;32(18):6391–410. doi: 10.1523/JNEUROSCI.6221-11.2012
- Guan X., Hasan M.N., Maniar S. et al. Reactive astrocytes in glioblastoma multiforme. Mol Neurobiol 2018;55(8):6927–38. doi: 10.1007/s12035-018-0880-8
- Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 2014;62(9):1377–91. doi: 10.1002/glia.22683
- Butt A.M., Fern R.F., Matute C. Neurotransmitter signaling in white matter. Glia 2014;62(11):1762–79. doi: 10.1002/glia.22674
- Haroutunian V., Katsel P., Roussos P. et al. Myelination, oligodendrocytes, and serious mental illness. Glia 2014;62(11):1856–77. doi: 10.1002/glia.22716
- Banker G.A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 1980;209(4458):809–10. doi: 10.1126/science.7403847
- Ullian E.M., Sapperstein S.K., Christopherson K.S. et al. Control of synapse number by glia. Science 2001;291(5504):657–61. doi: 10.1126/science.291.5504.657
- Christopherson K.S., Ullian E.M., Stokes C.C. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005;120(3):421–33. doi: 10.1016/j.cell.2004.12.020
- Kucukdereli H., Allen N.J., Lee A.T. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci USA 2011;108(32):E440–9. doi: 10.1073/pnas.1104977108
- Allen N.J., Bennett M.L., Foo L.C. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 2012;486(7403):410–4. doi: 10.1038/nature11059
- Singh S.K., Stogsdill J.A., Pulimood N.S. et al. Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via Hevin. Cell 2016;164(1–2):183–96. doi: 10.1016/j.cell.2015.11.034
- Farhy-Tselnicker I., van Casteren A.C., Lee A. et al. Astrocytesecreted glypican 4 regulates release of neuronal pentraxin 1 from axons to induce functional synapse formation. Neuron 2017;96(2):428–45.e413. doi: 10.1016/j.neuron.2017.09.053
- Krencik R., Seo K., van Asperen J.V. et al. Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes. Stem Cell Rep 2017;9(6):1745–53. doi: 10.1016/j.stemcr.2017.10.026
- Stogsdill J.A., Ramirez J., Liu D. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2017;551(7679):192–7. doi: 10.1038/nature24638
- Blanco-Suarez E., Liu T.F., Kopelevich A. et al. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors. Neuron 2018;100(5):1116–32.e1113. doi: 10.1016/j.neuron.2018.09.043
- Chung W.S., Clarke L.E., Wang G.X. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013;504(7480):394–400. doi: 10.1038/nature12776
- Tasdemir-Yilmaz O.E., Freeman M.R. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev 2014;28(1):20–33. doi: 10.1101/gad.229518.113
- Vainchtein I.D., Chin G., Cho F.S. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 2018;359(6381):1269–73. doi: 10.1126/science.aal3589
- Lee J.H., Kim J.Y., Noh S. et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 2021;590(7847):612–7. doi: 10.1038/s41586-020-03060-3
- Kuffler S.W., Nicholls J.G., Orkand R.K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 1966;29(4):768–87. doi: 10.1152/jn.1966.29.4.768
- Olsen M.L., Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 2008;107(3):589–601. doi: 10.1111/j.1471-4159.2008.05615.x
- Kelley K.W., Ben Haim L., Schirmer L. et al. Kir4.1-dependent astrocyte-fast motor neuron interactions are required for peak strength. Neuron 2018;98(2):306–19.e307. doi: 10.1016/j.neuron.2018.03.010
- Bazargani N., Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci 2016;19(2):182–9. doi: 10.1038/nn.4201
- Shlapakova T.I., Kostin R.K., Tyagunova E.E. Reactive oxygen species: participation in cellular processes and the development of pathology. Bioorganicheskaya khimiya = Bioorganic Chemistry 2020;46(5):466–85. (In Russ.). doi: 10.31857/S013234232005022X
- Yu X., Nagai J., Marti-Solano M. et al. Context-specific striatal astrocyte molecular responses are phenotypically exploitable. Neuron 2020;108(6):1146–62.e1110. doi: 10.1016/j.neuron.2020.09.021
- Placone A.L., Quinones-Hinojosa A., Searson P.C. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol 2016;37(1):61–9. doi: 10.1007/s13277-015-4242-0
- Burda J.E., Bernstein A.M., Sofroniew M.V. Astrocyte roles in traumatic brain injury. Exp Neurol 2016;275(3):305–15. doi: 10.1016/j.expneurol.2015.03.020
- Heneka M.T., Carson M.J., El Khoury J. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015;14(4):388–405. doi: 10.1016/s1474-4422(15)70016-5
- Krawczyk M.C., Haney J.R., Pan L. et al. Human astrocytes exhibit tumor microenvironment-, age-, and sex-related transcriptomic signatures. J Neurosci 2022;42(8):1587–603. doi: 10.1523/JNEUROSCI.0407-21.2021
- Diaz-Castro B., Bernstein A.M., Coppola G. et al. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell Rep 2021;36(6):109508. doi: 10.1016/j.celrep.2021.109508
- Pinter A., Hevesi Z., Zahola P. et al. Chondroitin sulfate proteoglycan-5 forms perisynaptic matrix assemblies in the adult rat cortex. Cell Signal 2020;74:109710. doi: 10.1016/j.cellsig.2020.109710
- Chen W., Wang D., Du X. et al. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol 2015;32(3):43. doi: 10.1007/s12032-015-0487-0
- Biasoli D., Sobrinho M.F., da Fonseca A.C. et al. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy. Oncogene 2014;3(10):e123. doi: 10.1038/oncsis.2014.36
- Shlapakova T.I., Tyagunova E.E., Kostin R.K. et al. Targeted antitumor drug delivery to glioblastoma multiforme cells. Russ J Bioorg Chem 2021;47(2):376–9. doi: 10.1134/S1068162021020254
- Shlapakova T.I., Tyagunova E.E., Kostin R.K. et al. Targeted delivery of antitumor drugs to glioblastoma multiforme cells. Bioorganicheskaya khimiya = Bioorganic Chemistry 2021;47(3):299–303. (In Russ.). doi: 10.31857/S0132342321020251
- Bogoyavlenskaya T.A., Tyagunova E.E., Kostin R.K. et al. Glioblastoma break-in; try something new. Int J Cancer Manag 2021;14(1):e109054. doi: 10.5812/ijcm.109054
- Esteban F.J., Horcajadas A., El-Rubaidi O. et al. El monóxido de nitrógeno en los astrocitomas malignos. Rev Neurol 2005;40(7):437–40.
- Campos J.C., Campos P.T., Bona N.P. et al. Synthesis and Biological Evaluation of Novel 2-imino-4-thiazolidinones as Potential Antitumor Agents for Glioblastoma. Med Chem 2022;18(4):452–62. doi: 10.2174/1573406417666210806094543
- Grant R., Ironside J.W. Glutathione S-transferases and cytochrome P450 detoxifying enzyme distribution in human cerebral glioma. J Neurooncol 1995;25(1):1–7. doi: 10.1007/BF01054717
- Han X., Yoon S.H., Ding Y. et al. Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. Oncol Rep 2010;23(4):1053–62. doi: 10.3892/or_00000732
- Fletcher-Sananikone E., Kanji S., Tomimatsu N. et al. Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence. Cancer Res 2021;81(23):5935–47. doi: 10.1158/0008-5472.CAN-21-0752
- Nikolenko V.N., Gridin L.A., Oganesyan M.V. The posterior perforated substance: a brain mystery wrapped in an enigma. Curr Top Med Chem 2019;19(32):2991–8. doi: 10.2174/1568026619666191127122452
Supplementary files


