mTOR inhibitor as off-label option in treatment of progressive refractory nasopharyngeal carcinoma

Cover Page

Cite item

Abstract

Nasopharyngeal carcinoma (NpC) is a malignant tumor developing from the non-keratinizing epithelium of the nasopharynx. In 2022, more that 530,000 new NpC cases were registered worldwide. The rate of NpC in the Russian federation reaches 0.3 % among all malignancies and up to 2 % of head and neck cancers. The 5-year overall survival rate varies from 90 % in patients with stage I NpC to 40 % in those with stage Iv NpC. Over 40 % of newly diagnosed NpC patients already have stage Iv disease.

In this article, we report a case of successful treatment of a patient with locally advanced recurrent nasopharyngeal carcinoma.

About the authors

A. M. Mudunov

Clinical Hospital “Lapino” of the “Mother and Child” Group of companies; Sechenov University, Ministry of Health of Russia

Author for correspondence.
Email: fake@neicon.ru
ORCID iD: 0000-0002-0918-3857

111 1st Uspenskoe Shosse, Lapino, Moscow  Region 143081

Bld. 2, 8 Trubetskaya St., Moscow 11999

Russian Federation

A. M. Khabazov

Specialized Medical Center of the Bank of Russia

Email: fake@neicon.ru
ORCID iD: 0000-0001-9372-3328

66 Sevastopolsky Prospekt, 116152 Moscow

Russian Federation

M. B. Pak

Specialized Medical Center of the Bank of Russia

Email: mbpak@yandex.ru
ORCID iD: 0000-0003-4546-0011

Maxim Bokmanovich Pak 

66 Sevastopolsky Prospekt, 116152 Moscow

Russian Federation

S. V. Berelavichus

Specialized Medical Center of the Bank of Russia

Email: fake@neicon.ru
ORCID iD: 0000-0001-8727-6111

66 Sevastopolsky Prospekt, 116152 Moscow

Russian Federation

H. Chen

Beijing Chao-Yang hospital, Capital Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0001-7690-731X

8 South Gongren Gymnasium Road, Chaoyang District, Beijing 100006

China

References

  1. Encyclopedia of clinical Oncology: basic tools and methods for the diagnosis and treatment of malignant neoplasms. Ed. by M.I. Davydov. Moscow: RADAR-2004, 2004. 1456 p. (In Russ.).
  2. Yang Y., Qu S., Li J. et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncology 2021;22(8):1162–74. doi: 10.1016/S1470-2045(21)00302-8
  3. Al-Anazi A., Alanazi B., Alshanbari H.M. et al. Increased prevalence of EBV infection in nasopharyngeal carcinoma patients: a six-year cross-sectional study. Cancers (Basel) 2023;15(3):643. doi: 10.3390/cancers15030643
  4. Zhang J., Fang W., Qin T. et al. Co-expression of PD-1 and PD-L1 predicts poor outcome in nasopharyngeal carcinoma. Med Oncol 2015;32(3):86. doi: 10.1155/2022/8537966
  5. Blanchard P., Lee A., Marguet S. et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol 2015;16(6):645–55. doi: 10.1016/S1470-2045(15)70126-9
  6. Zhang Y., Li W.F., Liu X. et al. Nomogram to predict the benefit of additional induction chemotherapy to concurrent chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma: analysis of a multicenter, phase III randomized trial. Radiother Oncol 2018;129(1):18–22. doi: 10.1016/j.radonc.2017.12.002
  7. Ribassin-Majed L., Marguet S., Lee A.W. et al. What is the best treatment of locally advanced nasopharyngeal carcinoma? An individual patient data network meta-analysis. J Clin Oncol 2017;35(5):498–505. doi: 10.1200/JCO.2016.67.4119
  8. Chua D.T., Wei W.I., Sham J.S. et al. Treatment outcome for synchronous locoregional failures of nasopharyngeal carcinoma. Head Neck 2003;25(7):585–94. doi: 10.1002/hed.10242
  9. Toumi N., Ennouri S., Charfeddine I. et al. Local and lymph node relapse of nasopharyngeal carcinoma: a single-center experience. Ear Nose Throat J 2020;100(Suppl 5):795S–800S. doi: 10.1177/0145561320908955
  10. Poh S.S., Soong Y.L., Sommat K. et al. Retreatment in locally recurrent nasopharyngeal carcinoma: current status and perspectives. Cancer Commun (Lond) 2021;4(5):361–70. doi: 10.1002/cac2.12159
  11. Bolotina L.V., Vladimirova L.Yu., Dengina N.V. et al. Tumors of the head and neck. Zlokachestvennye opukholi = Malignant Tumors 2024;14(3s2):160–82. (In Russ.). doi: 10.18027/2224-5057-2024-14-3s2-1.1-09
  12. Shi S., Li B., Zhou P. et al. Analysis of the clinical efficacy and safety of anti-PD-1 immune checkpoint inhibitors in locally advanced nasopharyngeal cancer. Cancer Med 2024;13(14):e7359. doi: 10.1002/cam4.7359
  13. Zhou Z., Li P. et al. Mutational landscape of nasopharyngeal carcinoma based on targeted next-generation sequencing: implications for predicting clinical outcomes. Mol Med 2022;28(1):55. doi: 10.1186/s10020-022-00479-4
  14. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487(7407):330–7. doi: 10.1038/nature11252
  15. Zehir A., Benayed R., Shah R.H. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23(6):703–13. doi: 10.1038/nm.4333
  16. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015;517(7536):576–82. doi: 10.1038/nature14129
  17. Cheaib B., Auguste A., Leary A. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. Chin J Cancer 2015;34(1):4–16. doi: 10.5732/cjc.014.10289
  18. Vivanco I., Sawyers C.L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2(7):489–501. doi: 10.1038/nrc839
  19. Bessiere L., Todeschini A.-L. et al. A Hot-spot of In-frame ̀ duplications activates the oncoprotein AKT1 in juvenile granulosa cell tumors. eBioMedicine 2015;2(5):421–31. doi: 10.1016/j.ebiom.2015.03.002
  20. Auguste A., Bessiere L., Auguste A. et al. Molecular analyses ̀ of juvenile granulosa cell tumors bearing AKT1 mutations provide insights into tumor biology and therapeutic leads. Hum Mol Genet 2015;24(23):6687–98. doi: 10.1093/hmg/ddv373
  21. Chang M.T., Bhattarai T.S., Schram A.M. et al. Accelerating discovery of functional mutant alleles in cancer. Cancer Discov 2018;8(2):174–83. doi: 10.1158/2159-8290.CD-17-0321
  22. Yeh Y.-C., Ho H.-L., Wu Y.C. et al. AKT1 internal tandem duplications and point mutations are the genetic hallmarks of sclerosing pneumocytoma. Mod Pathol 2020;33(3):391–403. doi: 10.1038/s41379-019-0357-y
  23. Parikh C., Janakiraman V., Wu W.I. et al. Disruption of PH-kinase domain interactions leads to oncogenic activation of AKT in human cancers. Proc Natl Acad Sci USA 2012;109(47):19368–73. doi: 10.1073/pnas.1204384109
  24. Calleja V., Laguerre M., Parker P.J., Larijani B. et al. Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol 2009;7(1):e17. doi: 10.1371/journal.pbio.1000017
  25. Smyth L.M., Tamura K., Oliveira M. et al. Capivasertib, an AKT kinase inhibitor, as monotherapy or in combination with fulvestrant in patients with AKT1E17K-mutant, ER-positive metastatic breast cancer. Clin Cancer Res 2020;26(15):3947–57. doi: 10.1158/1078-0432.CCR-19-3953
  26. Kalinsky K., Zihan W., Kalinsky K. et al. Ipatasertib in patients with tumors with AKT mutations: results from the NCI-MATCH ECOG-ACRIn trial (EAY131) sub-protocol Z1K. Clin Cancer Res 2025. doi: 10.1158/1078-0432.CCR-24-3431
  27. Yu Z., Wei W., Liu H. et al. Efficient everolimus treatment for metastatic castration resistant prostate cancer with akt1 mutation: a case report. Onco Targets Ther 2021;14:5423–8. doi: 10.2147/OTT.S334205
  28. Giannakis M., Mu X.J., Shukla S.A. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep 2016;15(4):857–65. doi: 10.1016/j.celrep.2016.03.075
  29. Tredan O., Treilleux I., Wang Q. et al. Predicting everolimus ́ treatment efficacy in patients with advanced endometrial carcinoma: a GINECO group study. Target Oncol 2013;8(4):243–51. doi: 10.1007/s11523-012-0242-9
  30. Schneider T.C., de Wit D., Links T.P. et al. Everolimus in patients with advanced follicular-derived thyroid cancer: results of a phase II clinical trial. J Clin Endocrinol Metab 2017;102(2):698–707. doi: 10.1210/jc.2016-2525
  31. Bryce A.H., Egan J.B., Borad M.J. et al. Experience with precision genomics and tumor board, indicates frequent target identification, but barriers to delivery. Oncotarget 2017;8(16):27145–54. doi: 10.18632/oncotarget.16057

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 36990 от  21.07.2009.