Preview

Опухоли головы и шеи

Расширенный поиск

Лечение нежелательных явлений, ассоциированных с приемом ленватиниба, у пациентов с радиойодрефрактерным дифференцированным раком щитовидной железы

https://doi.org/10.17650/2222-1468-2019-9-4-49-61

Аннотация

Ленватиниб – мультикиназный ингибитор рецепторов к фактору роста эндотелия сосудов (vascular endothelial growth factor, VEGF) 1–3, фактору роста фибробластов 1–4, тромбоцитарному фактору роста α, а также протоонкогенов RET и KIT. Ленватиниб был одобрен в качестве препарата для монотерапии радиойодрефрактерного дифференцированного рака щитовидной железы, а также (в комбинации с эверолимусом) как препарат 2-й линии для терапии прогрессирующего почечно-клеточного рака. Кроме того, сейчас проводятся исследования эффективности ленватиниба в отношении нескольких типов злокачественных новообразований, включая неоперабельный гепатоцеллюлярный рак. Несмотря на то что ленватиниб имеет высокую эффективность, при его применении могут развиваться неблагоприятные явления (НЯ), которые необходимо тщательно контролировать и активно лечить. Большинство из этих НЯ свойственны всем анти-VEGF-препаратам. Это артериальная гипертензия, диарея, повышенная утомляемость или астения, снижение аппетита и массы тела. В данном обзоре обобщены сведения о безопасности ленватиниба и представлены рекомендации по лечению как частых, так и редких НЯ. Обсуждаются потенциальные механизмы, лежащие в основе этих НЯ, и предлагаются рекомендации по уменьшению выраженности токсических эффектов. Разработка плана лечения, включающего стратегии профилактики и терапии НЯ, ассоциированных с приемом ленватиниба, позволит улучшить качество жизни пациентов, повысить их приверженность к лечению, уменьшить необходимость в снижении дозы, временной или полной отмене препарата, а также обеспечить наилучшие исходы лечения.

Об авторах

M. E. Cabanillas
The University of Texas M.D. Anderson Cancer Center
Соединённые Штаты Америки


S. Takahashi
Japanese Foundation for Cancer Research
Япония


Список литературы

1. Busaidy N.L., Cabanillas M.E. Differentiated thyroid cancer: management of patients with radioiodine nonresponsive disease. J Thyroid Res 2012; 2012: 618985.

2. Pacini F., Ito Y., Luster M. et al. Radioactive iodine-refractory differentiated thyroid cancer: unmet needs and future directions. Expert Rev Endocrinol Metab 2012;7:541–54.

3. Cooper D.S., Doherty G.M., Haugen B.R. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–214.

4. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines® ). Thyroid carcinoma. Version 1; 2018 https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf [Accessed October 3, 2018].

5. Durante C., Haddy N., Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91:2892–9.

6. Xing M., Haugen B.R., Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. Lancet 2013;381:1058–69.

7. Gruber J.J., Colevas A.D. Differentiated thyroid cancer: focus on emerging treatments for radioactive iodinerefractory patients. Oncologist 2015;20:113–26.

8. Brose M.S., Nutting C.M., Jarzab B. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014;384:319–28.

9. Worden F. Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Ther Adv Med Oncol 2014;6:267–79.

10. Eisai Inc. Lenvima (lenvatinib) [prescribing information]. Eisai Inc., WoodcliffLake, NJ, 2017.

11. Matsui J., Funahashi Y., Uenaka T. et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 2008;14:5459–65.

12. Matsui J., Yamamoto Y., Funahashi Y. et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 2008;122:664–71.

13. Okamoto K., Kodama K., Takase K. et al. Antitumor activities of the targeted multityrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett 2013;340:97–103.

14. Tohyama O., Matsui J., Kodama K. et al. Antitumor activity of lenvatinib(e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014;2014:638747.

15. Yamamoto Y., Matsui J., Matsushima T. et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell 2014;6:18.

16. Ikuta K., Yano S., Trung V.T. et al. E7080, a multi-tyrosine kinase inhibitor, suppresses the progression of malignant pleural mesothelioma with different proangiogenic cytokine production profiles. Clin Cancer Res 2009; 15:7229–37.

17. Laursen R., Wehland M., Kopp S. et al. Effects and role of multikinase inhibitors in thyroid cancer. Curr Pharm Des 2016;22:5915–26.

18. Schlumberger M., Tahara M., Wirth L.J. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015;372:621–30.

19. Cabanillas M.E., Hu M.I., Durand J.B., Busaidy N.L. Challenges associated with tyrosine kinase inhibitor therapy for metastatic thyroid cancer. J Thyroid Res 2011;2011:985780.

20. Brose M.S., Worden F.P., Newbold K.L. et al. Effect of age on the efficacy and safety of lenvatinib in radioiodinefefractory differentiated thyroid cancer in the phase III SELECT trial. J Clin Oncol 2017;35:2692–9.

21. Haddad R.I., Schlumberger M., Wirth L.J. et al. Incidence and timing of common adverse events in Lenvatinib-treated patients from the SELECT trial and their association with survival outcomes. Endocrine 2017;56:121–8.

22. Brose M.S., Frenette C.T., Keefe S.M., Stein S.M. Management of sorafenibrelated adverse events: a clinician’s perspective. Semin Oncol 2014;41 (suppl 2):S1–S16.

23. Elisei R., Schlumberger M.J., Müller S.P. et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013;31:3639–46.

24. Chrisoulidou A., Mandanas S., Margaritidou E. et al. Treatment compliance and severe adverse events limit the use of tyrosine kinase inhibitors in refractory thyroid cancer. Onco Targets Ther 2015;8:2435–42.

25. Jasim S., Iniguez-Ariza N.M., Hilger C.R. et al. Optimizing lenvatinib therapy in patients with metastatic radioactive iodine-resistant differentiated thyroid cancers. Endocr Pract 2017;23:1254–61.

26. Small H.Y., Montezano A.C., Rios F.J. et al. Hypertension due to an- tiangiogenic cancer therapy with vascular endothelial growth factor inhibitors: understanding and managing a new syndrome. Can J Cardiol 2014;30:534–43.

27. Wasserstrum Y., Kornowski R., Raanani P. et al. Hypertension in cancer patients treated with anti-angiogenic based regimens. Cardiooncology 2015;1:6.

28. Schlumberger M., Jarzab B., Cabanillas M.E. et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib(E7080) in advanced medullary thyroid cancer. Clin Cancer Res 2016;22:44–53.

29. Bendtsen M.A.F., Grimm D., Bauer J. et al. Hypertension caused by lenvatinib and everolimus in the treatment of metastatic renal cell carcinoma. Int J Mol Sci 2017;18:E1736. DOI: 10.3390/ijms18081736.

30. Molina A.M., Hutson T.E., Larkin J. et al. A phase 1b clinical trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in combination with everolimus for treatment of metastatic renal cell carcinoma (RCC). Cancer Chemother Pharmacol 2014;73:181–9.

31. Motzer R.J., Hutson T.E., Glen H. et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 2015;16:1473–82.

32. Wirth L.J., Tahara M., Robinson B. et al. Treatment-emergent hypertension and efficacy in the phase 3 Study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT). Cancer 2018;124:2365–72.

33. Kiyota N., Schlumberger M., Muro K. et al. Subgroup analysis of Japanese patients in a phase 3 study of lenvatinib in radioiodine-refractory differentiated thyroid cancer. Cancer Sci 2015;106:1714–21.

34. Ancker O.V., Wehland M., Bauer J. et al. The adverse effect of hypertension in the treatment of thyroid cancer with multi-kinase inhibitors. Int J Mol Sci 2017;18:E625. DOI: 10.3390/ijms18030625.

35. Sueta D., Suyama K., Sueta A. et al. Lenvatinib, an oral multi-kinases inhibitor, – associated hypertension: potential role of vascular endothelial dysfunction. Atherosclerosis 2017;260:116–20.

36. Dienstmann R., Braña I., Rodon J., Tabernero J. Toxicity as a biomarker of efficacy of molecular targeted therapies: focus on EGFR and VEGF inhibiting anticancer drugs. Oncologist 2011;16:1729–40.

37. Azizi M., Chedid A., Oudard S. Home blood-pressure monitoring in patients receiving sunitinib. N Engl J Med 2008;358:95–7.

38. Bamias A., Manios E., Karadimou A. et al. The use of 24-h ambulatory blood pressure monitoring (ABPM) during the first cycle of sunitinib improves the diagnostic accuracy and management of hypertension in patients with advanced renal cancer. Eur J Cancer 2011;47:1660–8.

39. Maitland M.L., Bakris G.L., Black H.R. et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 2010;102:596–604.

40. Takahashi S., Kiyota N., Tahara M. Optimal use of lenvatinib in the treatment of advanced thyroid cancer. Cancers Head Neck 2017;2:7.

41. James P.A., Oparil S., Carter B.L. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee(JNC 8). JAMA 2014;311:507–20.

42. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines® ). Cancer-related fatigue. Version 2; 2018. https://www.nccn.org/professionals/physician_gls/PDF/fatigue.pdf [Accessed October 3, 2018].

43. Eisen T., Sternberg C.N., Robert C. et al. Targeted therapies for renal cell carcinoma: review of adverse event management strategies. J Natl Cancer Inst 2012;104:93–113.

44. Berdelou A., Borget I., Godbert Y. et al. Lenvatinib for the treatment of radioiodine-refractory thyroid cancer in real-life practice. Thyroid 2017 DOI: 10.1089/thy.2017.0205.

45. Li J., Gu J. Risk of gastrointestinal events with newly approved(after 2011) vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a meta-analysis of randomized controlled trials. Eur J Clin Pharmacol 2017;73:1209–17.

46. Aw D.C., Tan E.H., Chin T.M. et al. Management of epidermal growth factor receptor tyrosine kinase inhibitor-related cutaneous and gastrointestinal toxicities. Asia Pac J Clin Oncol 2018;14:23–31.

47. Cohen R.B., Oudard S. Antiangiogenic therapy for advanced renal cell carcinoma: management of treatment-related toxicities. Invest New Drugs 2012;30:2066–79.

48. Pilotte A.P., Hohos M.B., Polson K.M. et al. Managing stomatitis in patients treated with mammalian target of rapamycin inhibitors. Clin J Oncol Nurs 2011;15:E83–9.

49. Rugo H.S., Seneviratne L., Beck J.T. et al. Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): a single-arm, phase 2 trial. Lancet Oncol 2017;18:654–62.

50. Anderson J., Cuellar S. Updates in the use of the mTOR inhibitor everolimus in advanced breast cancer. J Cancer Clin Trials 2016;1:2.

51. Lacouture M.E., Ciccolini K., Kloos R.T., Agulnik M. Overview and management of dermatologic events associated with targeted therapies for medullary thyroid cancer. Thyroid 2014;24:1329–40.

52. Lacouture M.E., Wu S., Robert C. et al. Evolving strategies for the management of hand-foot skin reaction associated with the multitargeted kinase inhibitors sorafenib and sunitinib. Oncologist 2008;13:1001–11.

53. Chen H.X., Cleck J.N. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 2009;6:465–77.

54. Armstrong T.S., Wen P.Y., Gilbert M.R., Schiff D. Management of treatmentassociated toxicites of anti-angiogenic therapy in patients with brain tumors. Neuro Oncol 2012;14:1203–14.

55. Kitamura M., Hayashi T., Suzuki C. et al. Successful recovery from a subclavicular ulcer caused by lenvatinib for thyroid cancer: a case report. World J Surg Oncol 2017;15:24.

56. Verheul H.M., Pinedo H.M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 2007;7:475–85.

57. Silberstein J.L., Millard F., Mehrazin R. et al. Feasibility and efficacy of neoadjuvant sunitinib before nephronsparing surgery. BJU Int 2010;106:1270–6.

58. Zhu C., Ma X., Hu Y. et al. Safety and efficacy profile of lenvatinib in cancer therapy: a systematic review and meta-analysis. Oncotarget 2016;7:44545–57.

59. Andrae J., Gallini R., Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008;22:1276–312.

60. Ye J.Y., Chan G.C., Qiao L. et al. Plateletderived growth factor enhances platelet recovery in a murine model of radiationinduced thrombocytopenia and reduces apoptosis in megakaryocytes via its receptors and the PI3-k/Akt path-way. Haematologica 2010;95:1745–53.

61. Kamba T., McDonald D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 2007; 96:1788–95.

62. Colombo J.R., Wein R.O. Cabozantinib for progressive metastatic medullary thyroid cancer: a review. Ther Clin Risk Manag 2014;10:395–404.

63. Walraven M., Witteveen P.O., Lolkema M.P. et al. Antiangiogenic tyrosine kinase inhibition related gastrointestinal perforations: a case report and literature review. Angiogenesis 2011;14:135–41.

64. Stone R.L., Sood A.K., Coleman R.L. Collateral damage: toxic effects of targeted antiangiogenic therapies in ovarian cancer. Lancet Oncol 2010;11:465–75.

65. Qi W.X., Sun Y.J., Tang L.N. et al. Risk of gastrointestinal perforation in cancer patients treated with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a systematic review and metaanalysis. Crit Rev Oncol Hematol 2014;89:394–403.

66. Spigel D.R., Hainsworth J.D., Yardley D.A. et al. Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol 2010;28:43–8.

67. Blevins D.P., Dadu R., Hu M. et al. Aerodigestive fistula formation as a rare side effect of antiangiogenic tyrosine kinase inhibitor therapy for thyroid cancer. Thyroid 2014;24:918–22.

68. Stott V.L., Hurrell M.A., Anderson T.J. Reversible posterior leukoencephalopathy syndrome: a misnomer reviewed. Intern Med J 2005;35:83–90.

69. Allen J.A., Adlakha A., Bergethon P.R. Reversible posterior leukoencephalopathy syndrome after bevacizumab/FOLFIRI regimen for metastatic colon cancer. Arch Neurol 2006;63:1475–8.

70. Seet R.C., Rabinstein A.A. Clinical features and outcomes of posterior reversible encephalopathy syndrome following bevacizumab treatment. QJM 2012;105:69–75.

71. Fugate J.E., Claassen D.O., Cloft H.J. et al. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc 2010;85:427–32.

72. Tlemsani C., Mir O. Boudou-Rouquette P. et al. Posterior reversible encephalopathy syndrome induced by anti-VEGF agents. Target Oncol 2011;6:253–8.

73. Hobson E.V., Craven I., Blank S.C. Posterior reversible encephalopathy syndrome: a truly treatable neurologic illness. Perit Dial Int 2012;32:590–4.

74. Datar S., Singh T., Rabinstein A.A. et al. Long-term risk of seizures and epilepsy in patients with posterior reversible encephalopathy syndrome. Epilepsia 2015;56:564–8.

75. Ay H., Buonanno F.S., Schaefer P.W. et al. Posterior leukoencephalopathy without severe hypertension: utility of diffusionweighted MRI. Neurology 1998;51:1369–76.

76. Orphanos G.S., Ioannidis G.N., Ardavanis A.G. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol 2009;48:964–70.

77. Tocchetti C.G., Gallucci G., Coppola C. et al. The emerging issue of cardiac dysfunction induced by antineoplastic angiogenesis inhibitors. Eur J Heart Fail 2013;15:482–9.

78. Van Marcke C., Ledoux B., Petit B., Seront E. Rapid and fatal acute heart failure induced by pazopanib. BMJ Case Rep 2015;2015. pii: bcr2015211522. DOI: 10.1136/bcr-2015-211522.

79. Lenihan D.J., Kowey P.R. Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist 2013;18:900–8.

80. Mouhayar E., Durand J.B., Cortes J. Cardiovascular toxicity of tyrosine kinase inhibitors. Expert Opin Drug Saf 2013;12:687–96.

81. Resteghini C., Cavalieri S., Galbiati D. et al. Management of tyrosine kinase inhibitors (TKI) side effects in differentiated and medullary thyroid cancer patients. Best Pract Res Clin Endocrinol Metab 2017;31:349–61.

82. Common Terminology Criteria for Adverse Events v3.0(CTCAE). https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf [Accessed October 3, 2018].


Рецензия

Для цитирования:


Cabanillas M.E., Takahashi S. Лечение нежелательных явлений, ассоциированных с приемом ленватиниба, у пациентов с радиойодрефрактерным дифференцированным раком щитовидной железы. Опухоли головы и шеи. 2019;9(4):49-61. https://doi.org/10.17650/2222-1468-2019-9-4-49-61

For citation:


Cabanillas M.E., Takahashi S. Managing the adverse events associated with lenvatinib therapy in radioiodine-refractory differentiated thyroid cancer. Head and Neck Tumors (HNT). 2019;9(4):49-61. (In Russ.) https://doi.org/10.17650/2222-1468-2019-9-4-49-61

Просмотров: 5200


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)