Selpercatinib in the treatment of medullary and radioiodine-refractory differentiated thyroid cancer with RET mutation (literature review)
https://doi.org/10.17650/2222-1468-2025-15-1-74-88
Abstract
Selpercatinib is a novel, highly selective, small-molecule inhibitor of RET kinase that competes with adenosine triphosphate. In experimental models, this drug has demonstrated nanomolar activity against various RET gene alterations, including an acquired resistance mutation in the gatekeeper gene at residue V804, as well as antitumor activity in the brain. Selpercatinib inhibits wild-type and various mutated forms of RET, as well as vascular endothelial growth factor receptors (VEGFR1 and VEGFR3) with half-maximal inhibitory concentrations from 0.92 to 67.8 nM, and fibroblast growth factor receptors (FGFR1, FGFR2, and FGFR3).
The article presents results of clinical studies on the efficacy and safety of selpercatinib in patients with radioiodine refractory differentiated thyroid cancer with alterations in RET gene and in patients with medullary thyroid cancer with a germinal or somatic mutation in this gene.
About the Authors
E. V. BorodavinaRussian Federation
Ekaterina Vladimirovna Borodavina
4 Koroleva St., Obninsk 249036
S. I. Kutukova
Russian Federation
56 Veteranov Prospekt, Saint Petersburg 192288,
6–8 L’va Tolstogo St., Saint Petersburg 197022
Т. V. Kekeeva
Russian Federation
1 Moskvorechye St., Moscow 115522
Р. A. Isaev
Russian Federation
4 Koroleva St., Obninsk 249036
References
1. Wells S.A. Jr, Robinson B.G., Gagel R.F. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012;30(2):134–41. DOI: 10.1200/JCO.2011.35.5040
2. Elisei R., Schlumberger M.J., Müller S.P. et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013;31(29):3639–46. DOI: 10.1200/JCO.2012.48.4659
3. Brose M.S., Nutting C.M., Jarzab B. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014;384(9940):319–28. DOI: 10.1016/S0140-6736(14)60421-9
4. Schlumberger M., Tahara M., Wirth L.J. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015;372(7):621–30. DOI: 10.1056/NEJMoa1406470
5. Borodavina E.V., Isaev P.A., Shurinov A.Yu. et al. Efficacy and tolerability of lenvatinib in patients with radioiodine-refractory differentiated thyroid cancer: results of a multicenter observational study in the Russian Federation. Opukholi golovy i shei = Head and Neck Tumors 2020;10(1):65–72. (In Russ.). DOI: 10.17650/2222-1468-2020-10-1-65-72
6. Brose M.S., Bible K.C., Chow L.Q.M. et al. Management of treatment-related toxicities in advanced medullary thyroid cancer. Cancer Treat Rev 2018;66:64–73. DOI: 10.1016/j.ctrv.2018.04.007
7. Cabanillas M.E., Habra M.A. Lenvatinib: role in thyroid cancer and other solid tumors. Cancer Treat Rev 2016;42:47–55. DOI: 10.1016/j.ctrv.2015.11.003
8. Resolution of the expert council on the topic “Clinical practice of drug therapy of thyroid cancer”. Opukholi golovy i shei = Head and Neck Tumors 2022;12(2):132–8. (In Russ.). DOI: 10.17650/2222-1468-2022-12-2-132-138
9. Khan M.S., Qadri Q., Makhdoomi M.J. RET/PTC gene rearrangements in thyroid carcinogenesis: assessment and clinicopathological correlations. Pathol Oncol Res 2018;26(1):507–13. DOI: 10.1007/s12253-018-0540-3
10. Belli C., Penault-Llorca F., Ladanyi M. et al. ESMO recommendations on the standard methods to detect RET fusions and mutations in daily practice and clinical research. Ann Oncol 2021;32(3):337–50. DOI: 10.1016/j.annonc.2020.11.021
11. Taccaliti A., Silvetti F., Palmonella G., Boscaro M. Genetic alterations in medullary thyroid cancer: diagnostic and prognostic markers. Curr Genomics 2011;12(8):618–25. DOI: 10.2174/138920211798120835
12. Ciampi R., Romei C., Ramone T. et al. Genetic landscape of somatic mutations in a large cohort of sporadic medullary thyroid carcinomas studied by next-generation targeted sequencing. iScience 2019;20:324–36. DOI: 10.1016/j.isci.2019.09.030
13. Scurini C., Quadro L., Fattoruso O. et al. Germline and somatic mutations of the RET protooncogene in apparently sporadic medullary thyroid carcinomas. Mol Cell Endocrinol 1998;137(1):51–7. DOI: 10.1016/s0303-7207(97)00234-7
14. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014;159(3):676–90. DOI: 10.1016/j.cell.2014.09.050
15. Liu Z., Hou P., Ji M. et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab 2008;93(8):3106–16. DOI: 10.1210/jc.2008-0273
16. Landa I., Ibrahimpasic T., Boucai L et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 2016;126(3):1052–66. DOI: 10.1172/JCI85271
17. Pozdeyev N., Gay L.M., Sokol E.S. et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res 2018;24(13):3059–68. DOI: 10.1158/1078-0432.CCR-18-0373
18. Vasiliev E.V., Rumyantsev P.O., Saenko V.A. et al. Molecular analysis of structural disorders of the genome of papillary thyroid carcinomas. Molekulyarnaya biologiya = Molecular Biology 2004;38(4):642–53. (In Russ.).
19. Al-Jundi M., Thakur S., Gubbi S., Klubo-Gwiezdzinska J. Novel targeted therapies for metastatic thyroid cancer – a comprehensive review. Cancers (Basel) 2020;12(8):2104. DOI: 10.3390/cancers12082104
20. Agrawal N., Jiao Y., Sausen M. et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 2013;98(2):E364–9. DOI: 10.1210/jc.2012-2703
21. Santoro M., Papotti M., Chiappetta G. et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab 2002;87(1):370–9. DOI: 10.1210/jcem.87.1.8174
22. Duan H., Li Y., Hu P. et al. Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology 2019;75(6):890–9. DOI: 10.1111/his.13942
23. Nikiforov Y.E., Rowland J.M., Bove K.E. et al. Distinct pattern of RET oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 1997;57(9):1690–4.
24. Ciampi R., Giordano T.J., Wikenheiser-Brokamp K. et al. HOOK3- RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr Relat Cancer 2007;14(2):445–52. DOI: 10.1677/ERC-07-0039
25. Vanden Borre P., Schrock A.B., Anderson P.M. et al. Pediatric, adolescent, and young adult thyroid carcinoma harbors frequent and diverse targetable genomic alterations, including kinase fusions. Oncologist 2017;22(3):255–63. DOI: 10.1634/theoncologist.2016-0279
26. Su X., Li Z., He C. et al. Radiation exposure, young age, and female gender are associated with high prevalence of RET/PTC1 and RET/ PTC3 in papillary thyroid cancer: a meta-analysis. Oncotarget 2016;7(13):16716–30. DOI: 10.18632/oncotarget.7574
27. Mizuno T., Iwamoto K., Kyoizumi S. et al. Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene 2000;19(3):438–43. DOI: 10.1038/sj.onc.1203343
28. Ricarte-Filho J., Li S., Garcia-Rendueles M. et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013;123(11):4935–44. DOI: 10.1172/JCI69766
29. Bounacer A., Wicker R., Caillou B. et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 1997;15(11):1263–73. DOI: 10.1038/sj.onc.1200206
30. Wirth L.J., Sherman E., Robinson B. et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med 2020;383(9):825–35. DOI: 10.1056/NEJMoa2005651
31. Eisenhauer E.A., Therasse P., Bogaerts J. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45(2):228–47. DOI: 10.1016/j.ejca.2008.10.026
32. Raez L.E., Kang H., Ohe Y. et al. Patient-reported outcomes with selpercatinib treatment in patients with RET-driven cancers in the phase I/II LIBRETTO-001 trial. ESMO Open 2024;9(5):103444. DOI: 10.1016/j.esmoop.2024.103444
33. Hadoux J., Elisei R., Brose M.S. et al. LIBRETTO-531 trial investigators, phase 3 trial of selpercatinib in advanced RET-mutant medullary thyroid cancer. N Engl J Med 2023;389(20):1851–61. DOI: 10.1056/NEJMoa2309719
34. Drilon A., Subbiah V., Gautschi O. et al. Selpercatinib in patients with RET fusion-positive non-small-cell lung cancer: updated safety and efficacy from the registrational LIBRETTO-001 phase I/II trial. J Clin Oncol 2023;41(2):385–94. DOI: 10.1200/JCO.22.00393
35. Wirth L.J., Brose M.S., Subbiah V. et al. Durability of response with selpercatinib in patients with RET-activated thyroid cancer: longterm safety and efficacy from LIBRETTO-001. J Clin Oncol 2024;42(27):3187–95. DOI: 10.1200/JCO.23.02503
Review
For citations:
Borodavina E.V., Kutukova S.I., Kekeeva Т.V., Isaev Р.A. Selpercatinib in the treatment of medullary and radioiodine-refractory differentiated thyroid cancer with RET mutation (literature review). Head and Neck Tumors (HNT). 2025;15(1):74-88. (In Russ.) https://doi.org/10.17650/2222-1468-2025-15-1-74-88