Preview

Опухоли головы и шеи

Расширенный поиск

ПЛОСКОКЛЕТОЧНЫЙ РАК ГОЛОВЫ И ШЕИ: НОВЫЕ ПЕРСПЕКТИВЫ ЛЕЧЕНИЯ?

https://doi.org/10.17650/2222-1468-2013-0-3-4-10

Полный текст:

Аннотация

Плоскоклеточный рак головы и шеи (ПРГШ) составляет около 3 % всех злокачественных опухолей у мужчин и 1,5 % всех злокачественных опухолей у женщин. В то время как число больных раком гортани снижается, число пациентов (в особенности молодого возраста) из группы высокого риска, больных раком ротовой полости, ассоциированным с вирусом папилломы человека (ВПЧ), увеличивается. Плоскоклеточный рак, ассоциированный с ВПЧ, чаще поражает орофарингеальную область и характеризуется лучшим прогнозом. Гораздо реже ВПЧ выявляется при гипофарингеальном раке и еще реже при плоскоклеточном раке носоглотки и гортани. Наиболее частым подтипом ВПЧ, ассоциированным с ПРГШ, является подтип 16, на 2-м месте по частоте встречаемости стоит подтип 18. В качестве иммуногистохимического маркера выступает экспрессия гена p16 INK4A (цитоплазматический и ядерный). В проведенном нами небольшом исследовании была установлена 100 % положительная корреляционная связь между наличием экспрессии p16 INK4A и ВПЧ. Плоскоклеточный рак полости рта наиболее часто диагностируется у пациентов моложе 50 лет; распространенность составляет 20 %. В то время как злокачественные опухоли высокого риска, ассоциированные с ВПЧ, характеризуются очень незначительным количеством мутаций сигнальных молекул, участвующих в передаче информации с тирозинкиназных рецепторов, злокачественные опухоли, негативные в отношении ВПЧ, зачастую сопровождаются беспорядочными ДНК-мутациями, включая мутации генов- онкосупрессоров, таких как p53 и CDKN2A. Данная закономерность часто прослеживается при злокачественных опухолях, ин- дуцированных различными токсическими веществами (например, табачный дым). Тем не менее на данный момент ведутся дискуссии по поводу того, могут ли некоторые подтипы ПРГШ являться следствием так называемых «драйверных» (инициирующих) мутаций, т. е. мутаций важных звеньев сигнальных путей и мутаций тирозинкиназных рецепторов (например, рецепторов к факторам роста фибробластов (FGF-рецепторы), протеинтирозинфосфатазы (PTEN), гена PIK3CA). При плоскоклеточном раке нижних дыхательных путей, трахеи, бронхов и легких, который также является следствием воздействия различных токсических веществ, эти «драйверные» мутации встречаются в 20 % случаев. Опухоли, развившиеся вследствие драйверных мутаций, особенно затрагивающих тирозинкиназные и другие ассоциированные сигнальные пути, поддаются лечению с помощью низкомолекулярных лекарственных препаратов, ингибиторов тирозинкиназы и сигнальных киназ, таких как эрлотиниб, воздействующий на эпидермальный фактор роста (EGF), или вемурафениб, взаимодействующий с белком B-RAF. Необходима дополнительная стратификация ПРГШ с целью внедрения в практику широкого спектра ингибиторов, предназначенных, по крайней мере, для данной подгруппы пациентов.

Об авторах

Т. Брауншвейг
Институт патологии клиники Университета RWTH, Аахен, Германия
Германия


А. Левандровски
Институт патологии клиники Университета RWTH, Аахен, Германия
Германия


Д. Смеетс
Институт патологии клиники Университета RWTH, Аахен, Германия
Германия


М. В. Болотин
ФГБУ «Российская детская клиническая больница» Минздрава России, Москва
Россия


Список литературы

1. Haddad R.I. and D.M. Shin. Recent advances in head and neck cancer. N Engl J Med 2008;359(11):1143–54.

2. Jemal A., Siegel R., Xu J., Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010;60(5):277–300.

3. Brennan J.A., Boyle J.O., Koch W.M. et al. Association between cigarette smoking and mutation of the p53 gene in squamouscell carcinoma of the head and neck. N Engl J Med 1995;332(11):712–7.

4. Syrjanen K., Syrjanen S. and Pyrhonen S. Human papilloma virus (HPV) antigens in lesions of laryngeal squamous cell carcinomas. ORL J Otorhinolaryngol Relat Spec 1982;44(6):323–34.

5. Syrjanen K.J. and Surjanen S.M. Histological evidence for the presence of condylomatous epithelial lesions in association with laryngeal squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec 1981;43(4):181–94.

6. Quintero K., Giraldo G.A., Uribe M.L. et al. Human papillomavirus types in cases of squamous cell carcinoma of head and neck in Colombia. Braz J Otorhinolaryngol 2013;79(3):375–81.

7. Curado M.P. and Boyle P. Epidemiology of head and neck squamous cell carcinoma not related to tobacco or alcohol. Curr Opin Oncol 2013;25(3):229–34.

8. van Monsjou H.S., van Velthuysen M.L., van den Brekel M.W. et al. Human papillomavirus status in young patients with head and neck squamous cell carcinoma. Int J Cancer 2012;130(8):1806–12.

9. Smeets D., Ertmer K., Braunschweig T., Bolotin M.V. HPV in squamous epithelial lesions of the head and neck: different affection of different tumors. Tumors of the head and neck (in russian) 2011;1:61–5.

10. Thomas J. and Primeaux T. Is p16 immunohistochemistry a more cost-effective method for identification of human papilloma virus-associated head and neck squamous cell carcinoma? Ann Diagn Pathol 2012;16(2): 91–9.

11. National Cancer Registry Ireland Cancer Trends, 2011.10.

12. Kelley M.J., Otterson G.A. et al. CDKN2 in HPV-positive and HPV-negative cervical-carcinoma cell lines. Int J Cancer 1995;63(2):226–30.

13. Klaes R., Friedrich T., Spitkovsky D. et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 2001;92(2):276–84.

14. Mardis E.R. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008;9:387–402.

15. Lechner M., Frampton G., Fenton T. et al. Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med 2013;5(5):49.

16. Stransky N., Egloff A.M., Tward A.D. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011;333(6046):1157–60.

17. Comprehensive genomic characterization of squamous cell lung cancers. Cancer Genome Atlas Research Network. Nature 2012;489(7417):519–25.

18. Bissada E., Abboud O., Abou Chacra Z. et al. Prevalence of K-RAS Codons 12 and 13 Mutations in Locally Advanced Head and Neck Squamous Cell Carcinoma and Impact on Clinical Outcomes. Int J Otolaryngol 2013;2013:848021.

19. Leemans C.R., Braakhuis B.J. and Brakenhoff R.H. The molecular biology of head and neck cancer. Nat Rev Cancer 2011;11(1):9–22.

20. Schlecht N.F., Brandwein-Gensler M., Nuovo G.J. et al. A comparison of clinically utilized human papillomavirus detection methods in head and neck cancer. Mod Pathol 2011;24(10): 1295–305.

21. El-Naggar A.K. and Westra W.H. p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: A guide for interpretative relevance and consistency. Head Neck 2012;34(4):459–61.

22. Specenier P. and Vermorken J.B. Cetuximab: its unique place in head and neck cancer treatment. Biologics 2013;7:77–90.

23. Granata R., Miceli R., Orlandi E. et al. Tumor stage, human papillomavirus and smoking status affect the survival of patients with oropharyngeal cancer: an Italian validation study. Ann Oncol 2012;23(7):1832–7.

24. Chen Y.J., Rau K.M., Chien C.Y. et al. High p16 expression predicts a positive response to chemoradiotherapy in stage IVa/b head and neck squamous cell carcinoma. Asian Pac J Cancer Prev 2011;12(3):649–55.

25. Fischer C.A., Kampmann M., Zlobec I. et al. p16 expression in oropharyngeal cancer: its impact on staging and prognosis compared with the conventional clinical staging parameters. Ann Oncol 2010;21(10):1961–6.

26. Press O.W., Appelbaum F., Ledbetter J.A. et al. Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B cell lymphomas. Blood 1987;69(2):584–91.

27. Newman S. Eribulin, a simplified ketone analog of the tubulin inhibitor halichondrin B, for the potential treatment of cancer. Curr Opin Investig Drugs 2007;8(12):1057–66. 28. Owonikoko T.K. and Khuri F.R. Targeting the PI3K/AKT/mTOR Pathway. Am Soc Clin Oncol Educ Book 2013;2013:395–401.

28. Herzog A., Bian Y., Vander Broek R. et al. PI3K-mTOR inhibitor PF-04691502 anti-tumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer. Clin Cancer Res 2013 May 2.

29. Jiang T., Zhou C., Gu J. et al. Enhanced therapeutic effect of cisplatin on the prostate cancer in tumor-bearing mice by transfecting the attenuated Salmonella carrying a plasmid co-expressing p53 gene and mdm2 siRNA. Cancer Lett 2013 May 29.

30. Yabuuchi S., Pai S.G., Campbell N.R. et al. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett 2013;335(1):41–51.

31. Allay J.A., Steiner M.S., Zhang Y. et al. Adenovirus p16 gene therapy for prostate cancer. World J Urol 2000;18(2):111–20.

32. Sadeqzadeh E., de Bock C.E. and Thorne R.F. Sleeping Giants: Emerging Roles for the Fat Cadherins in Health and Disease. Med Res Rev 2013 May 29.

33. Ren M., Hong M., Liu G. et al. Novel FGFR inhibitor ponatinib suppresses the growth of non-small cell lung cancer cells overexpressing FGFR1. Oncol Rep 2013;29(6):2181–90.

34. Sweeny L., Liu Z., Lancaster W. et al. Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor. Laryngoscope 2012;122(7):1539–44.


Для цитирования:


Брауншвейг Т., Левандровски А., Смеетс Д., Болотин М.В. ПЛОСКОКЛЕТОЧНЫЙ РАК ГОЛОВЫ И ШЕИ: НОВЫЕ ПЕРСПЕКТИВЫ ЛЕЧЕНИЯ? Опухоли головы и шеи. 2013;(3):4-10. https://doi.org/10.17650/2222-1468-2013-0-3-4-10

For citation:


Braunschweig T., Lewandrowski A., Smeets D., Bolotin M.V. SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECK: NEW AVENUES OF TREATMENT? Head and Neck Tumors (HNT). 2013;(3):4-10. (In Russ.) https://doi.org/10.17650/2222-1468-2013-0-3-4-10

Просмотров: 430


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)