Preview

Head and Neck Tumors (HNT)

Advanced search

Efficacy of vandetanib in the treatment of medullary thyroid cancer: literature review and case report

https://doi.org/10.17650/2222-1468-2019-9-3-38-48

Abstract

Medullary thyroid cancer (MTC) is a rare disorder that accounts for approximately 1.7 % of all thyroid malignancies. MTC is usually detected at early stages; however, approximately 10–15 % of patients are diagnosed with locally advanced MTC and distant metastases. Treatment of such patients is challenging due to biological characteristics of the disease and very few effective treatment approaches available. The investigation of mechanisms of carcinogenesis, as well as advances in pharmacology, allowed the development of a new group of targeted drugs, namely tyrosine kinases, which efficacy against progressive unresectable locally advanced or metastatic MTC has been demonstrated in multiple clinical trials. Vandetanib has been registered for MTC treatment in the Russian Federation. MTC is very rare, thus, each case of vandetanib use for its treatment is particularly interesting. Moreover, since the approval of this drug in 2011 by the U. S. Food and Drug Administration (FDA), new data on the clinical use of vandetanib have been accumulated. Importantly, clinical trials are usually well designed and conducted in near-ideal conditions, whereas the real conditions can be different and patients may have individual characteristics. Therefore, the aim of this study was to update the information on the efficacy and safety of vandetanib by retrospective analysis of available publications and to report a case of MTC treated with vandetanib.

About the Authors

А. М. Mudunov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


Yu. V. Alymov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


I. S. Romanov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


S. О. Podvyaznikov
Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
Russian Federation
Bld. 1, 2 / 1 Barrikadnaya St., Moscow 125993


А. V. Ignatova
Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia; RUDN University
Russian Federation
Bld. 1, 2 / 1 Barrikadnaya St., Moscow 125993; 6 Miklukho-Maklaya St., Moscow 117198


References

1. Malignant tumors in Russia in 2017 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinsky, G.V. Petrova. Moscow: MNIOI im. P.A. Gertzena, 2018. 250 p. Available at: http://www.oncology.ru/service/statistics/malignant_tumors/2017.pdf. (In Russ.)

2. Wells S.A. Jr, Asa S.L., Dralle H. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015;25(6):567–610. DOI: 10.1089/thy.2014.0335.

3. Howlader N., Noone A.M., Krapcho M. et al. SEER Cancer Statistics Review, 1975–2016, National Cancer Institute. Bethesda, MD. Available at: https://seer.cancer.gov/csr/1975_2016.

4. Gertner M.E., Kebebew E. Multiple endocrine neoplasia type 2. Curr Treat Options Oncol 2004;5(4):315–25.

5. Raue F., Frank-Raue K. Multiple endocrine neoplasia type 2: 2007 update. Horm Res 2007;68 Suppl 5:101–4. DOI: 10.1159/000110589.

6. Kloos R.T., Eng C., Evans D.B. et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009;19(6):565–612. DOI: 10.1089/thy.2008.0403.

7. Saad M.F., Ordonez N.G., Rashid R.K. et al. Medullary carcinoma of the thyroid. A study of the clinical features and prognostic factors in 161 patients. Medicine (Baltimore) 1984;63(6):319–42.

8. Hundahl S.A., Fleming I.D., Fremgen A.M., Menck H.R. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 1998;83(12):2638–48. DOI: 10.1002/(sici)1097-0142(19981215)83:12<2638::aid-cncr31>3.0.co;2-1.

9. Vitale G., Tagliaferri P., Caraglia M. et al. Slow release lanreotide in combination with interferon-alpha2b in the treatment of symptomatic advanced medullary thyroid carcinoma. J Clin Endocrinol Metab 2000;85(3):983–8. DOI: 10.1210/jcem.85.3.6435.

10. NCCN clinical practice guidelines in oncology (NCCN Guidelines). Thyroid Carcinoma. Version 2.2018 – November 28, 2018. Available at: https://jnccn.org/abstract/journals/jnccn/16/12/article-p1429.xml.

11. Chen H., Sippel R.S., O’Dorisio M.S. et al. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas 2010;39:775–83.

12. Martins R.G., Rajendran J.G., Capell P. et al. Medullary thyroid cancer: options for systemic therapy of metastatic disease? J Clin Oncol 2006;24(11):1653–5. DOI: 10.1200/JCO.2005.05.4106.

13. Brierley J., Tsang R., Simpson W.J. et al. Medullary thyroid cancer: analyses of survival and prognostic factors and the role of radiation therapy in local control. Thyroid 1996;6(4):305–10. DOI: 10.1089/thy.1996.6.305.

14. Fersht N., Vini L., A’Hern R., Harmer C. The role of radiotherapy in the management of elevated calcitonin after surgery for medullary thyroid cancer. Thyroid 2001;11(12):1161–8. DOI: 10.1089/10507250152741019.

15. Caprelsa. Instructions for medical use of the drug. ЛП-002238 from 11.01.2019. (In Russ.) Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=6dff8568-b758-469b-806a-a7309a0d98ef&t.

16. Donis-Keller H., Dou S., Chi D. et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993;2(7):851–6. DOI: 10.1093/hmg/2.7.851.

17. Eng C., Smith D.P., Mulligan L.M. et al. Point mutations within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet 1994;3(2):237–41. DOI: 10.1093/hmg/3.2.237.

18. Hofstra R., Landsvater R., Ceccherini I. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994;367(6461):375–6. DOI: 10.1038/367375a0.

19. Mulligan L.M., Kwok J.B., Healey C.S. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993;363(6428):458–60. DOI: 10.1038/363458a0.

20. Santoro M., Rosati R., Grieco M. et al. The RET proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 1990;5(10):1595–8.

21. Fallahi P., Ferrari S.M., Mazzi V. et al. Personalization of targeted therapy in advanced thyroid cancer. Curr Genomics 2014;15(3):190–202. DOI: 10.2174/1389202915999140404101902.

22. Alonso-Gordoa T., Díez J.J., Durán M., Grande E. Advances in thyroid cancer treatment: latest evidence and clinical potential. Ther Adv Med Oncol 2015;7(1):22–38. DOI: 10.1177/1758834014551936.

23. Yeganeh M.Z., Sheikholeslami S., Dehbashi Behbahani G. et al. Skewed mutational spectrum of RET proto-oncogene Exon10 in Iranian patients with medullary thyroid carcinoma. Tumour Biol 2015;36(7):5225–31. DOI: 10.1007/s13277-015-3179-7.

24. Drosten M., Pützer B.M. Mechanisms of disease: cancer targeting and the impact of oncogenic RET for medullary thyroid carcinoma therapy. Nat Clin Pract Oncol 2006;3(10):564–74. DOI: 10.1038/ncponc0610.

25. Hennige A.M., Lammers R., Arlt D. et al. Ret oncogene signal transduction via a IRS-2/PI 3-kinase/PKB and a SHC/ Grb-2 dependent pathway: possible implication for transforming activity in NIH3T3 cells. Mol Cell Endocrinol 2000;167(1–2): 69–76. DOI: 10.1016/s0303-7207(00)00283-5.

26. Murakami H., Iwashita T., Asai N. et al. Enhanced phosphatidylinositol 3-kinase activity and high phosphorylation state of its downstream signalling molecules mediated by Ret with the MEN 2B mutation. Biochem Biophys Res Commun 1999;262(1):68–75. DOI: 10.1006/bbrc.1999.1186.

27. Elisei R., Cosci B., Romei C. et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 2008;93(3):682–7. DOI: 10.1210/jc.2007-1714.

28. Zbuk K.M., Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 2007;7(1):35–45. DOI: 10.1038/nrc2037.

29. Chernock R.D., Hagemann I.S. Molecular pathology of hereditary and sporadic medullary thyroid carcinomas. Am J Clin Pathol 2015;143(6):768–77. DOI: 10.1309/AJCPHWACTTUYJ7DD.

30. Turner H.E., Harris A.L., Melmed S., Wass J.A. Angiogenesis in endocrine tumors. Endocr Rev 2003;24(5):600–32. DOI: 10.1210/er.2002-0008.

31. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25(4):581–611. DOI: 10.1210/er.2003-0027.

32. Shibuya M., Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006;312(5):549–60. DOI: 10.1016/j.yexcr.2005.11.012.

33. Kerbel R.S. Tumor angiogenesis. N Engl J Med 2008;358(19):2039–49. DOI: 10.1056/NEJMra0706596.

34. Capp C., Wajner S.M., Siqueira D.R. et al. Increased expression of vascular endothelial growth factor and its receptors, VEGFR-1 and VEGFR-2, in medullary thyroid carcinoma. Thyroid 2010;20(8): 863–71. DOI: 10.1089/thy.2009.0417.

35. Bunone G., Vigneri P., Mariani L. et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 1999;155(6):1967–76. DOI: 10.1016/S0002-9440(10)65515-0.

36. Rodríguez-Antona C., Pallares J., Montero-Conde C. et al. Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocr Relat Cancer 2010;17(1):7–16. DOI: 10.1677/ERC-08-0304.

37. Croyle M., Akeno N., Knauf J.A. et al. RET/PTC-induced cell growth is mediated in part by epidermal growth factor receptor (EGFR) activation: evidence for molecular and functional interactions between RET and EGFR. Cancer Res 2008;68(11):4183–91. DOI: 10.1158/0008-5472.CAN-08-0413.

38. Erovic B.M., Kim D., Cassol C. et al. Prognostic and predictive markers in medullary thyroid carcinoma. Endocr Pathol 2012;23(4):232–42. DOI: 10.1007/s12022-012-9225-8.

39. Fallahi P., Di Bari F.D., Ferrari S.M. et al. Selective use of vandetanib in the treatment of thyroid cancer. Drug Des Devel Ther 2015;9:3459–70. DOI: 10.2147/DDDT.S72495.

40. Carlomagno F., Vitagliano D., Guida T. et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 2002;62(24):7284–90.

41. Carlomagno F., Guida T., Anaganti S. et al. Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene 2004;23(36): 6056–63. DOI: 10.1038/sj.onc.1207810.

42. Ryan A.J., Wedge S.R. ZD6474 – a novel inhibitor of VEGFR and EGFR tyrosine kinase activity. Br J Cancer 2005;92 Suppl 1: S6–13. DOI: 10.1038/sj.bjc.6602603.

43. Morabito A., Piccirillo M.C., Falasconi F. et al. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist 2009;14(4):378–90. DOI: 10.1634/theoncologist.2008-0261.

44. Wells S.A. Jr, Gosnell J.E., Gagel R.F. et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 2010;28(5):767–72. DOI: 10.1200/JCO.2009.23.6604.

45. Robinson B.G., Paz-Ares L., Krebs A. et al. Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Endocrinol Metab 2010;95(6):2664–71. DOI: 10.1210/jc.2009-2461.

46. Wells S.A. Jr, Robinson B.G., Gagel R.F. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012;30(2):134–41. DOI: 10.1200/JCO.2011.35.5040.

47. Massicotte M.H., Brassard M., Claude-Desroches M. et al. Tyrosine kinase inhibitor treatments in patients with metastatic thyroid carcinomas: a retrospective study of the TUTHYREF network. Eur J Endocrinol 2014;170(4):575–82. DOI: 10.1530/EJE-13-0825.

48. Chougnet C.N., Borget I., Leboulleux S. et al. Vandetanib for the treatment of advanced medullary thyroid cancer outside a clinical trial: results from a French cohort. Thyroid 2015;25(4):386–91. DOI: 10.1089/thy.2014.0361.

49. AstraZeneca to compare the effects of two doses of vandetanib in patients with advanced medullary thyroid cancer. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01496313.

50. Uchino K., Komoda M., Tomomatsu J. et al. Safety and tolerability of vandetanib in japanese patients with medullary thyroid cancer: a phase I/II open-label study. Endocr Pract 2017;23(2):149–56. DOI: 10.4158/EP161259.OR.

51. Werner R.A., Schmid J.S., Higuchi T. et al. Predictive value of 18 F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib. J Nucl Med 2018;59(5):756–61. DOI: 10.2967/jnumed.117.199778.

52. Holden S.N., Eckhardt S.G., Basser R. et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol 2005;16(8):1391–7. DOI: 10.1093/annonc/mdi247.

53. Tamura T., Minami H., Yamada Y. et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol 2006;1(9):1002–9.

54. Fox E., Widemann B.C., Chuk M.K. et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Cancer Res 2013;19(15):4239–48. DOI: 10.1158/1078-0432.CCR-13-0071.

55. US Food and Drug Administration Center for Drug Evaluation and Research. Caprelsa (vandetanib) Tablets: US Prescribing Information, March 2014. Available at: http://www.fda.gov/downloads/Drugs/DrugSafety/UCM250399.pdf.

56. European Medicines Agency. Caprelsa (vandetanib): Summary of Product Characteristics. Available at: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002315/human_med_001529.jsp&mid=WC0b01ac058001d124.

57. Brassard M., Neraud B., Trabado S. et al. Endocrine effects of the tyrosine kinase inhibitor vandetanib in patients treated for thyroid cancer. J Clin Endocrinol Metab 2011;96(9):2741–9. DOI: 10.1210/jc.2010-2771.

58. Peuvrel L., Bachmeyer C., Reguiai Z. et al. Semiology of skin toxicity associated with epidermal growth factor receptor (EGFR) inhibitors. Support Care Cancer 2012;20(5): 909–21. DOI: 10.1007/s00520-012-1404-0.

59. Rosen A.C., Wu S., Damse A. et al. Risk of rash in cancer patients treated with vandetanib: systematic review and meta-analysis. J Clin Endocrinol Metab 2012;97(4): 1125–33. DOI: 10.1210/jc.2011-2677.

60. Giacchero D., Ramacciotti C., Arnault J.P. et al. A new spectrum of skin toxic effects associated with the multikinase inhibitor vandetanib. Arch Dermatol 2012;148(12):1418–20. DOI: 10.1001/2013.jamadermatol.192.

61. Sibaud V., Robert C. [Pigmentary disorders induced by anticancer agents. Part II: targeted therapies (In French)]. Ann Dermatol Venereol 2013;140(4):266–73. DOI: 10.1016/j.annder.2013.01.442.

62. Ensslin C.J., Rosen A.C., Wu S., Lacouture M.E. Pruritus in patients treated with targeted cancer therapies: systematic review and meta-analysis. J Am Acad Dermatol 2013;69(5):708–20. DOI: 10.1016/j.jaad.2013.06.038.

63. Yoon J., Oh C.W., Kim C.Y. Stevens-Johnson syndrome induced by vandetanib. Ann Dermatol 2011;23(Suppl 3):S343–5. DOI: 10.5021/ad.2011.23.S3.S343.

64. Hafermann M.J., Namdar R., Seibold G.E., Page R.L. 2nd . Effect of intravenous ondansetron on QT interval prolongation in patients with cardiovascular disease and additional risk factors for torsades: a prospective, observational study. Drug Healthc Patient Saf 2011;3:53–8. DOI: 10.2147/DHPS.S25623.

65. Scheffel R.S., Dora J.M., Siqueira D.R. et al. Toxic cardiomyopathy leading to fatal acute cardiac failure related to vandetanib: a case report with histopathological analysis. Eur J Endocrinol 2013;168(6):K51–4. DOI: 10.1530/EJE-13-0015.

66. Shah R.R., Morganroth J., Shah D.R. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf 2013;36(5):295–316. DOI: 10.1007/s40264-013-0047-5.

67. Qi W.X., Shen Z., Lin F. et al. Incidence and risk of hypertension with vandetanib in cancer patients: a systematic review and meta-analysis of clinical trials. Br J Clin Pharmacol 2013;75(4):919–30. DOI: 10.1111/j.1365-2125.2012.04417.x.

68. Grande E., Kreissl M.C., Filetti S. et al. Vandetanib in advanced medullary thyroid cancer: review of adverse event manage- ment strategies. Adv Ther 2013;30(11): 945–66. DOI: 10.1007/s12325-013-0069-5.

69. Cooper M.R., Yi S.Y., Alghamdi W. et al. Vandetanib for the treatment of medullary thyroid carcinoma. Ann Pharmacother 2014;48(3):387–94. DOI: 10.1177/1060028013512791.

70. Tuttle R.M., Brose M.S. Best use of the tyrosine kinase inhibitors in progressive differentiated thyroid cancer: discussion. Clin Adv Hematol Oncol 2016;14(5 Suppl 9):12–3.

71. Lenihan D.J., Kowey P.R. Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist 2013;18(8):900–8. DOI: 10.1634/theoncologist.2012-0466.

72. Tahara M., Brose M.S., Wirth L.J. et al. Impact of dose interruption on the efficacy of lenvatinib in a phase 3 study in patients with radioiodine-refractory differentiated thyroid cancer. Eur J Cancer 2019;106:61–8. DOI: 10.1016/j.ejca.2018.10.002.

73. Ravaud A., de la Fouchardière C., Asselineau J. et al. Efficacy of sunitinib in advanced medullary thyroid carcinoma: intermediate results of phase II THYSU. Oncologist 2010;15(2):212–3. DOI: 10.1634/theoncologist.2009-0303.

74. Capdevila J., Iglesias L., Halperin I. et al. Sorafenib in metastatic thyroid cancer. Endocr Relat Cancer 2012;19(2):209–16. DOI: 10.1530/ERC-11-0351.

75. Bible K.C., Suman V.J., Molina J.R. et al. A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J Clin Endocrinol Metab 2014;99(5):1687–93. DOI: 10.1210/jc.2013-3713.

76. Lim S.M., Chung W.Y., Nam K.H. et al. An open label, multicenter, phase II study of dovitinib in advanced thyroid cancer. Eur J Cancer 2015;51(12):1588–95. DOI: 10.1016/j.ejca.2015.05.020.

77. Schlumberger M., Jarzab B., Cabanillas M.E. et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res 2016;22(1):44–53. DOI: 10.1158/1078-0432.CCR-15-1127.

78. Elisei R., Schlumberger M.J., Müller S.P. et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013;31(29): 3639–46. DOI: 10.1200/JCO.2012.48.4659.

79. Brose M.S., Bible K.C., Chow L.Q.M. et al. Management of treatment-related toxicities in advanced medullary thyroid cancer. Cancer Treat Rev 2018;66:64–73. DOI: 10.1016/j.ctrv.2018.04.007.

80. Vitale G., Tagliaferri P., Caraglia M. et al. Slow release lanreotide in combination with interferon-alpha2b in the treatment of symptomatic advanced medullary thyroid carcinoma. J Clin Endocrinol Metab 2000;85(3):983–8. DOI: 10.1210/jcem.85.3.6435.


Review

For citations:


Mudunov А.М., Alymov Yu.V., Romanov I.S., Podvyaznikov S.О., Ignatova А.V. Efficacy of vandetanib in the treatment of medullary thyroid cancer: literature review and case report. Head and Neck Tumors (HNT). 2019;9(3):38-48. (In Russ.) https://doi.org/10.17650/2222-1468-2019-9-3-38-48

Views: 2109


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)