Stratification of papillary thyroid cancer relapse risk based on the results of molecular genetic studies
https://doi.org/10.17650/2222-1468-2020-10-1-93-100
Abstract
Introduction. Post-transcriptional mechanisms play a crucial role in the biological course and clinical manifestations of papillary thyroid cancer (PTC). Recent studies show that an increased content of oncogenic or reduced content of oncosuppressive microRNAs increases the aggressiveness of the tumor and correlates with an unfavorable prognosis of treatment, which allows them to be used in personalizing the treatment tactics of patients with PTC. The study objective is to compare the level of expression of 12 PTC-specific microRNAs and the frequency of V600E mutation of the BRAF gene in patients with different risk of relapse.
Materials and methods. The study included 175 patients with PTC. For quantitative analysis of microRNA expression, a reverse transcription reaction followed by a real-time polymerase chain reaction in formalin-fixed paraffin blocks was used. Correlations between 12 microRNA expression and BRAF mutation with different clinical and anatomical features of PTC the risk of relapse according to the American Thyroid Association Risk Stratification System (2009) were analyzed.
Results. We demonstrated that miR-146b, miR-221, miR-144, miR-451a, and miR-7 expression correlated with features such as extrathyroid tumor growth, larger size, multifocus, lymph node metastasis, and the presence of distant metastases of the PTC. Most importantly, miR-221, miR-144, miR-451a, and miR-7 expression correlated with risk levels, suggesting their potential significance in stratifying the risk of relapsing PTC. The dependence of the clinical behavior of PTC on the BRAF mutation has not been established.
Conclusion. The result of the study will contribute to the individual choice of preoperative treatment tactics for patients with PTC.
About the Authors
S. A. LukyanovRussian Federation
64 Vorovskogo St., Chelyabinsk 454092
S. V. Sergiyko
Russian Federation
64 Vorovskogo St., Chelyabinsk 454092
S. E. Titov
Russian Federation
8 / 2 Acad. Lavrentiev Ave., Novosibirsk 630090
I. V. Reshetov
Russian Federation
Bld. 2, 8 Trubetskaya St., Moscow 119991
Yu. A. Veryaskina
Russian Federation
8 / 2 Acad. Lavrentiev Ave., Novosibirsk 630090
A. V. Vazhenin
Russian Federation
64 Vorovskogo St., Chelyabinsk 454092
A. V. Gostimsky
Russian Federation
2 Litovskaya St., Saint Petersburg 194100
L. I. Ippolitov
Russian Federation
Bld. 2, 8 Trubetskaya St., Moscow 119991
M. O. Rogova
Russian Federation
Bld. 2, 8 Trubetskaya St., Moscow 119991
References
1. Davies L., Welch H.G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006;295(18):2164–7. DOI: 10.1001/jama.295.18.2164.
2. Goldfarb M., Casillas J. Unmet information and support needs in newly diagnosed thyroid cancer: comparison of adolescents/young adults (AYA) and older patients. J Cancer Surviv 2014;8(3):394–401. DOI: 10.1007/s11764-014-0345-7.
3. Onkendi E.O., McKenzie T.J., Richards M.L. et al. Reoperative experience with papillary thyroid cancer. World J Surg 2014;38(3):645–52. DOI: 10.1007/s00268-013-2379-9.
4. Kim H.J., Lee J.I., Kim N.K. et al. Prognostic implications of radioiodine avidity and serum thyroglobulin in differentiated thyroid carcinoma with distant metastasis. World J Surg 2013;37(12):2845–52. DOI: 10.1007/s00268-013-2213-4.
5. Cooper D.S., Doherty G.M., Haugen B.R. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19(11):1167–214. DOI: 10.1089/thy.2009.0110.
6. Haugen B.R., Alexander E.K., Bible K.C. et al. 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1–133. DOI: 10.1089/thy.2015.0020.
7. Titov S.E., Ivanov M.K., Demenkov P.S. et al. Combined quantitation of HMGA2 mRNA, microRNAs, and mitochondrialDNA content enables the identification and typing of thyroid tumors in fine- needle aspiration smears. BMC Cancer 2019;19(1):1010. DOI: 10.1186/s12885-019-6154-7.
8. Titov S.E., Ivanov M.K., Karpinskaya E.V. et al. miRNA profiling, detection of BRAF V600E mutation and RET-PTC1 translocation in patients from Novosibirsk oblast (Russia) with different types of thyroid tumors. BMC Cancer 2016;16:201. DOI: 10.1186/s12885-016-2240-2.
9. Chen J.H., Faquin W.C., Lloyd R.V., Nosé V. Clinicopathological and molecular characterization of nine cases of columnar cell variant of papillary thyroid carcinoma. Mod Pathol 2011;24(5):739–49. DOI: 10.1038/modpathol.2011.2.
10. Falvo L., Catania A., D’Andrea V. et al. Prognostic importance of histologic vascular invasion in papillary thyroid carcinoma. Ann Surg 2005;241(4):640–6. DOI: 10.1097/01. sla.0000157317.60536.08.
11. Tufano R.P., Teixeira G.V., Bishop J. еt al. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore) 2012;91(5):274–86. DOI: 10.1097/md.0b013e31826a9c71.
12. Rodrigues A.C., Penna G., Rodrigues E. et al. The genetics of papillary microcarcinomas of the thyroid: diagnostic and prognostic implications. Curr Genomics 2017;18(3):244–54. DOI: 10.2174/1389202918666170105094459.
13. Ito Y., Yoshida H., Kihara M. et al. BRAF (V600E) mutation analysis in papillary thyroid carcinoma: is it useful for all patients? World J Surg 2014;38(3):679–87. DOI: 10.1007/s00268-013-2223-2.
14. He H., Jazdzewski K., Li W. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 2005;102(52):19075–80. DOI: 10.1073/pnas.0509603102.
15. Pallante P., Visone R., Ferracin M. et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 2006;13(2):497–508. DOI: 10.1677/erc.1.01209.
16. Colamaio M., Borbone E., Russo L. et al. miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting. J Clin Endocrinol Metab 2011;96(12):E1915–24. DOI: 10.1210/jc.2011-0408.
17. De la Chapelle A., Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab 2011;96(11):3326–36. DOI: 10.1210/jc.2011-1004.
18. Esposito F., Tornincasa M., Pallante P. et al. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab 2012;97(5):E710–8. DOI: 10.1210/jc.2011-3068.
19. Сергийко С.В., Лукьянов С.А., Титов С.Е., Веряскина Ю.А. Молекулярно-генетическое тестирование в дифференциальной диагностике узловых образований щитовидной железы с цитологическим заключением «фолликулярная опухоль Bethesda IV». Практическая медицина 2019;17(4):149–52. [Sergiyko S.V., Lukyanov S.A., Titov S.E., Veryaskina Yu.A. Molecular-genetic testing in differential diagnostics of node lesions in thyroid gland with cytological conclusion of “follicular tumor Bethesda IV”. Prakticheskaya meditsina = Practical Medicine 2019;17(4):149–52. (In Russ.)]. DOI: 10.32000/2072-1757-2019-4- 149-152.
Review
For citations:
Lukyanov S.A., Sergiyko S.V., Titov S.E., Reshetov I.V., Veryaskina Yu.A., Vazhenin A.V., Gostimsky A.V., Ippolitov L.I., Rogova M.O. Stratification of papillary thyroid cancer relapse risk based on the results of molecular genetic studies. Head and Neck Tumors (HNT). 2020;10(1):93-100. (In Russ.) https://doi.org/10.17650/2222-1468-2020-10-1-93-100