Preview

Head and Neck Tumors (HNT)

Advanced search

Head and neck tumors and assisted reproductive technologies: social and legal aspects

https://doi.org/10.17650/2222-1468-2020-10-3-90-96

Abstract

Background. Currently, the proportion of pregnancies obtained by assisted reproductive technologies (ARTs) reaches 1.7–4.0 %. Short-term and long-term results of ART implementation require public and, most importantly, legal assessment. Some publications suggest higher risks of congenital deformities and head and neck cancers in children conceived by ART.

Objective: to review publications analyzing the problem of head and neck cancers in children conceived by ART and legal protection of the embryo.

Materials and methods. We performed retrospective analysis of 42 articles published in 1995–2019, including 33 foreign and 9 Russian articles.

Results. Earlier studies have demonstrated that children conceived by ART have an increased risk of cancers, including head and neck cancers, such as central nervous system tumors and retinoblastoma. Recent publications have shown no significant differences in the prevalence of malignant tumors between children born after ART and children conceived naturally. Nevertheless, the risk of developing head and neck tumors is higher in children after ART. The analysis of Russian and international legislation has demonstrated that the legal status of an embryo differs depending on whether it develops in vivo or in vitro.

Conclusion. Children conceived by ART are at higher risk of malignant head and neck tumors, primarily central nervous system tumors and retinoblastoma. The legal status of an embryo depends on whether it develops in vivo or in vitro.

About the Author

N. A. Ognerubov
G.R. Derzhavin Tambov State University
Russian Federation

93 Sovetskaya St., Tambov 392000



References

1. Measurement assisted human reproduction outcomes in Canada. A discussion paper prepared for participants of the 2010 Outcomes Roundtable. http://publications.gc.ca/collections/collection_2011/pac-ahrc/H1.

2. Qin J., Sheng X., Wang H. et al. Assisted reproductive technology and risk of congenital malformations: a metaanalysis based on cohort studies. Arch Gynecol Obstet 2015;292(4):777–98. DOI: 10.1007/s00404-015-3707-0.

3. Simpson J.L. Birth defects and assisted reproductive technologies. Semin Fetal Neonatal Med 2014;19(3):177–82. DOI: 10.1016/j.siny.2014.01.001.

4. Sunderam S., Kissin D.M., Crawford S.B. et al. Assisted reproductive technology surveillance – United States, 2015. MMWR Surveill Summ 2018;67(3):1–28. DOI: 10.15585/mmwr.ss6703a1.

5. Fauser B.C., Devroey P., Diedrich K. et al. Evian Annual Reproduction (EVAR) Workshop Group 2011. Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod Biomed Online 2014;28(2):162–82. DOI: 10.1016/j.rbmo.2013.10.013.

6. Gosden R., Trasler J., Lucifero D., Faddy M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 2003;361(9373):1975–7. DOI: 10.1016/S0140-6736(03)13592-1.

7. Källén B., Finnström O., Lindam A. et al. Congenital malformations in infants born after in vitro fertilization in Sweden. Birth Defects Res A Clin Mol Teratol 2010;88(3):137–43. DOI: 10.1002/bdra.20645.

8. Sutcliffe A.G., Ludwig M. Outcome of assisted reproduction. Lancet 2007;370(9584):351–9. DOI: 10.1016/S0140-6736(07)60456-5.

9. Davies M.J., Moore V.M., Willson K.J. et al. Reproductive technologies and the risk of birth defects. N Engl J Med 2012;366(19):1803–13. DOI: 10.1056/NEJMoa1008095.

10. Botto L.D., Flood T., Little J. et al. Cancer risk in children and adolescents with birth defects: a population-based cohort study. PLoS One 2013;8(7):e69077. DOI: 10.1371/journal.pone.0069077.

11. Katalinic A., Rösch C., Ludwig M. Pregnancy course and outcome after intracytoplasmic sperm injection: a controlled, prospective cohort study. Fertil Steril. 2004;81(6):1604–16. DOI: 10.1016/j.fertnstert.2003.10.053.

12. Harper J., Geraedts J., Borry P. et al. Current issues in medically assisted reproduction and genetics in europe: research, clinical practice, ethics, legal issues and policy. Hum Reprod 2014;29(8):1603–9. DOI: 10.1093/humrep/deu130.

13. Hansen M., Kurinczuk J.J., Bower C., Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med 2002;346(10):725–30. DOI: 10.1056/NEJMoa010035.

14. Hediger M.L., Bell E.M., Druschel C.M., Buck Louis G.M. Assisted reproductive technologies and children’s neurodevelopmental outcomes. Fertil Steril 2013;99(2):311–7. DOI: 10.1016/j.fertnstert.2012.12.013.

15. Hoorsan H., Mirmiran P., Chaichian S. et al. Congenital malformations in infants of mothers undergoing assisted reproductive technologies: a systematic review and meta-analysis study. J Prev Med Public Health 2017;50(6):347–60. DOI: 10.3961/jpmph.16.122.

16. Mayor S. Risk of congenital malformations in children born after assisted reproduction is higher than previously thought. BMJ 2010;340:c3191. DOI: 10.1136/bmj.c3191.

17. Neumann C., Thompson D.A., Thorson H. et al. Assisted reproduction is not associated with increased risk of congenital head and neck defects. Cureus 2018;10(3):e2287. DOI: 10.7759/cureus.2287.

18. Toren A., Sharon N., Mandel M. et al. Two embryonal cancers after in vitro fertilization. Cancer 1995;76(11):2372–4.

19. Hargreave M., Jensen A., Toender A. et al. Fertility treatment and childhood cancer risk: a systematic meta-analysis. Fertil Steril 2013;100(1):150–61. DOI: 10.1016/j.fertnstert.2013.03.017.

20. White L., Giri N., Vowels M.R., Lancaster P.A. Neuroectodermal tumours in children born after assisted conception. Lancet 1990;336(8730):1577. DOI: 10.1016/0140-6736(90)93350-x.

21. Michalek A.M., Buck G.M., Nasca P.C. et al. Gravid health status, medication use, and risk of neuroblastoma. Am J Epidemiol 1996;143(10):996–1001. DOI: 10.1093/oxfordjournals.aje.a008682.

22. Olshan A.F., Smith J., Cook M.N. et al. Hormone and fertility drug use and the risk of neuroblastoma: a report from the Children’s Cancer Group and the Pediatric Oncology Group. Am J Epidemiol 1999;150(9):930–8. DOI: 10.1093/oxfordjournals.aje.a010101.

23. Brinton L.A., Kruger K.S., Thomsen B.L. et al. Childhood tumor risk after treatment with ovulation-stimulating drugs. Fertil Steril 2004;81(4):1083–91. DOI: 10.1016/j.fertnstert.2003.08.042.

24. Mallol-Mesnard N., Menegaux F., Lacour B. et al. Birth characteristics and childhood malignant central nervous sytem tumors: the ESCALE study (French Society for Childhood Cancer). Cancer Detect Prev 2008;32(1):79–86. DOI: 10.1016/j.cdp.2008.02.003.

25. Marees T., Dommering C.J., Imhof S.M. et al. Incidence of retinoblastoma in Dutch children conceived by IVF: an expanded study. Hum Reprod 2009;24(12):3220–4. DOI: 10.1093/humrep/dep335.

26. Källén B., Finnström O., Lindam A. et al. Cancer risk in children and young adults conceived by in vitro fertilization. Pediatrics 2010;126(2):270–6. DOI: 10.1542/peds.2009-3225.

27. Foix-L’Hélias L., Aerts I., Marchand L. et al. Are children born after infertility treatment at increased risk of retinoblastoma? Hum Reprod 2012;27(7):2186–92. DOI: 10.1093/humrep/des149.

28. Spaan M., van den Belt-Dusebout A.W., van den Heuvel-Eibrink M.M. et al. Risk of cancer in children and young adults conceived by assisted reproductive technology. Hum Reprod 2019;34(4):740–50. DOI: 10.1093/humrep/dey394.

29. Spector L.G., Brown M.B., Wantman E. et al. Association of in vitro fertilization with childhood cancer in the United States. JAMA Pediatr 2019;173(6):e190392. DOI: 10.1001/jamapediatrics.2019.0392.

30. Okun N., Sierra S. Pregnancy outcomes after assisted human reproduction. J Obstet Gynaecol Can 2014;36(1):64–83. DOI: 10.1016/S1701-2163(15)30685-X.

31. Ognerubov N.A. Оn the issue of criminal law protection of the right of an embryo to life in the context of determining the moment of its beginning. The Scientific Heritage 2018;(27):13–5.

32. Pavlova Y.V., Dautbaeva-Mukhtarova A.E. Human life: the issue of determination of the start of legal protection. Meditsinskoe pravo = Journal of Medical Law 2018;(2):37–40. (In Russ.).

33. Maleshina A.V. Prospects for the criminal protection of “potential human life” (the comparative analysis). Izvestiya vysshikh uchebnykh zavedeniy. Pravovedenie = News of higher educational institutions. Jurisprudence 2011;(3):132–52. (In Russ.).

34. Druzhinina Yu. F. Legal regime of embryo in vitro. Zhurnal rossiyskogo prava = Journal of Russian Law 2017;(12):129–40. (In Russ.). DOI: 10.12737/article_5a200506899599.19842755.

35. Samoilova V.V. Russian and foreign family legislation on the use of assisted reproductive technologies (ART). Semeynoe i zhilishchnoe pravo = Family and Housing Law 2010;(3):7–11. (In Russ.).

36. Tishkevich I.S. Qualification of crimes against life. Minsk: PH of the MIA of the USSR, 1971. 78 p. (In Russ.).

37. Kurguzkina E.B. Mother’s murder of a newborn: nature, causes, prevention. Voronezh: Institute of the MIA of Russia, 1999. 151 p. (In Russ.).

38. Saint-Rose J. Law and life. Vestnik Moskovskogo universiteta. Seriya 11. Pravo = Bulletin of the Moscow University. Series 11. Law 2003;(6):56–69. (In Russ.).

39. Mason & McCall Smith’s Law and medical ethics. London, Edinburgh, Dublin: Butterworths, 1999. Pp. 125–37.

40. Moss K., Hughes R. Hart–Devlin revisited: law, morality and consent in parenthood. Med Sci Law 2011;51(2): 68–75. DOI: 10.1258/msl.2010.010214.


Review

For citations:


Ognerubov N.A. Head and neck tumors and assisted reproductive technologies: social and legal aspects. Head and Neck Tumors (HNT). 2020;10(3):90-96. (In Russ.) https://doi.org/10.17650/2222-1468-2020-10-3-90-96

Views: 589


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)