Preview

Head and Neck Tumors (HNT)

Advanced search

Causes of drug resistance and glioblastoma relapses

https://doi.org/10.17650/2222-1468-2021-11-1-101-108

Abstract

Glioblastoma multiform^ is one of the most aggressive malignancies, wich standard of treatment not changed over the past decade, and the average life expectancy from diagnosis to death does not exceed two years in the most optimistic trials. The review examines the features of the glioblastoma microenvironment, its genetic heterogeneity, the development of recurrent glioblastoma, the formation of drug resistance, the influence of the blood-brain barrier and the brain lymphatic system on the development of immunotherapy and targeted therapy. Molecular subgroups of glioblastomas with an assumed prognostic value were analyzed. It was determined that numerous relationships between glioblastoma cells and the microenvironment are aimed at ensuring tumor progression, and also cause a state of reduced effector function of T cells. Data on the development of future molecular-targeted therapies for four types of cancer cells based on their different properties and response to therapy are summarized: primary GSC, RISC cells, and proliferating and postmitotic non-GSC fractions. The penetration of blood-brain barrier with chemotherapeutic drugs and antibodies currently remains the main limitation in the treatment of glioblastoma. The resulting analysis of the causes is reduced to the following conclusions. A detailed understanding of the evolutionary dynamics of tumor progression can provide insight into the related molecular and genetic mechanisms underlying glioblastoma recurrence. The most promising methods of treatment for glioblastoma are combined therapy using immune checkpoint inhibitors in combination with new treatment methods -vaccine therapy, CAR-T-cell therapy and viral therapy. A deeper study of the mechanisms of drug resistance and acquisition resistance, biology and subcloning clonal populations of glioblastoma and its microenvironment, with active consideration of combined trips to the treatment will increase the survival rate of patients, and may lead to stable remission of the disease.

About the Authors

A. A. Mitrofanov
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

Alexey Andreevich Mitrofanov

23 Kashirskoe Hwy, Moscow 115478



D. R. Naskhletashvili
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

23 Kashirskoe Hwy, Moscow 115478



V. A. Aleshin
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

23 Kashirskoe Hwy, Moscow 115478



D. M. Belov
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

23 Kashirskoe Hwy, Moscow 115478



A. Kh. Bekyashev
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

23 Kashirskoe Hwy, Moscow 115478



V. B. Karakhan
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

23 Kashirskoe Hwy, Moscow 115478



N. V. Sevyan
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia
Russian Federation

Bld. 2, 8 Trubetskaya St., Moscow 119991



E. V. Prozorenko
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia
Russian Federation

Bld. 2, 8 Trubetskaya St., Moscow 119991



K. E. Roshchina
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

23 Kashirskoe Hwy, Moscow 115478



References

1. YakovenkoYu.G. Glioblastoma: current state of the problem. Meditsinsky vestnik Yuga Rossii = Medical Bulletin of the South of Russia 2019;10(4):28—35. DOI: 10.21886/2219-8075-2019-10-4-28-35. (In Russ.).

2. Shergalis A., Bankhead A. 3rd, Luesakul U. et al. Current Challenges and Opportunities in Treating Glioblastomas. Pharmacol Rev 2018;70(3):412—45. DOI: 10.1124/pr.117.014944.

3. Ostrom Q.T., Gittleman H., Xu J. et al. CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neurooncol 2016;18(5): v1-75. DOI: 10.1093/neuonc/now207.

4. Stupp R., Mason W.P., van den Bent M.J. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987—96. DOI: 10.1056/NEJMoa043330.

5. Chinot O.L., Wick W., Mason W. et al. Bevacizumab plus radiotherapy-temo-zolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370(8):709-22. DOI: 10.1056/NEJMoa1308345.

6. Tosoni A., Franceschi E., Poggi R., Brandes A.A. Relapsed glioblastoma: treatment strategies for initial and subsequent recurrences. Curr Treat Options Oncol 2016;17(9):49. DOI: 10.1007/s11864-016-0422-4.

7. Gorlia T., Stupp R., Brandes A.A. et al. New prognostic factors and calculators for outcome prediction in patients with recurrent glioblastoma: a pooled analysis of EORTC Brain Tumour Group Phase I and II clinical trials. Eur J Cancer 2012;48(8):1176-84. DOI: 10.1016/j.ejca.2012.02.004.

8. Stupp R., Taillibert S., Kanner A. et al. Effect of tumor-treating fields plus maintenance temozolomide vi maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 2017;318(23):2306-16. DOI: 10.1001/jama.2017.18718.

9. McLendon R., Friedman A., Bigner D. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455(7216):1061-8. DOI: 10.1038/nature07385.

10. Verhaak R.G.W., Hoadley K.A., Purdom E. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17(1):98-110. DOI: 10.1016/j.ccr.2009.12.020.

11. Patel A.P., Tirosh I., Trombetta J.J. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014;344(6190):1396—1401. DOI: 10.1126/science.1254257.

12. Korshunov A., Golanov A., Sycheva R. Immunohistochemical markers for prognosis of cerebral glioblastomas. J Neurooncol 2002;58(3):217—36. DOI: 10.1023/a:1016218117251.

13. Scorsetti M., Navarria P., Pessina F., Ascolese A.M. Multimodality therapy approaches, local and systemic treatment, compared with chemotherapy alone in recurrent glioblastoma. BMC Cancer 2015;15:486. DOI: 10.1186/s12885-015-1488-2.

14. Wei W., Shin Y.S., Xue M. et al. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell 2016;29(4):563—73. DOI: 10.1016/j.ccell.2016.03.012.

15. Qazi M.A., Vora P., Venugopal C. et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 2017;28(7):1448—56. DOI: 10.1093/annonc/mdx169.

16. Stavrovskaya A.A., Rusanov S.S., Rybalkina E.Yu. Problems of glioblastoma resistance to drug therapy. Review. Biokhimiya = Biochemistry 2016;81(2):179—90. (In Russ.).

17. Voronina E.I., Ageeva T.A., Ryzhova M.V. Features of the microenvironment and possibilities of immunotherapy of malignant glial tumors. Klinicheskaya i eksperimentalnaya morfologiya = Clinical and Experimental Morphology 2020;9(2):5—10. DOI: 10.31088/CEM2020.9.2.5-10. (In Russ.).

18. Broekman M.L., Maas S.L.N., Abels E.R. et al. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 2018;14(8):482—95. DOI: 10.1038/s41582-018-0025-8.

19. Jhaveri N., Chen T.C., Hofman F.M. Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett 2016;380(2):545—51. DOI: 10.1016/j.canlet.2014.12.028.

20. See A.P., Parker J.J., Waziri A. The role of regulatory T cells and microglia in glioblastoma associated immunosuppression. J Neurooncol 2015;123(3):405—12. DOI: 10.1007/s11060-015-1849-3.

21. Roesch S., Rapp C., Dettling S., Herold-Mende C. When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int J Mol Sci 2018;19(2):E436. DOI: 10.3390/ijms19020436.

22. Okolie O., Bago J.R., Schmid R.S. et al. Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol 2016;18(12):1622—33. DOI: 10.1093/neuonc/now117.

23. Pencheva N., de Gooijer M.C., Vis D.J. et al. Identification of a druggable pathway controlling glioblastoma invasiveness. Cell Rep 2017;20(1):48—60. DOI: 10.1016/j.celrep.2017.06.036.

24. Seano G. Targeting the perivascular niche in brain tumors. Curr Opin Oncol 2018;30(1):54—60. DOI: 10.1097/CCO.0000000000000417.

25. De Vleeschouwer S., Bergers G. Glioblastoma to target the tumor cell or the microenvironment? In: De Vleeschouwer S., editor. Glioblastoma. Codon Publications, Brisbane, Australia, 2017. Chapter 16. Pp. 315-40. DOI: 10.15586/codon.glioblastoma.2017.ch16.

26. Da Ros M., De Gregorio V., Iorio A.L. et al. Glioblastoma chemoresistance: the double play by microenvironment and blood-brain barrier. Int J Mol Sci 2018;19(10):2879. DOI: 10.3390/ijms19102879.

27. Lathia J.D., Mack S.C., Mulkearns-Hubert E.E. et al. Cancer stem cells in glioblastoma. Genes Dev 2015;29(12):1203-17. DOI: 10.1101/gad.261982.115.

28. Hadjipanayis C.G., Van Meir E.G. Tumor initiating cells in malignant gliomas: biology and implications for therapy. J Mol Med(Berl) 2009;87(4):363-74. DOI: 10.1007/s00109-009-0440-9.

29. Osuka S., Van Meir E.G. Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 2017;127(2):415-26. DOI: 10.1172/JCI89587.

30. Sabit H., Nakada M., Furuta T. et al. Characterizing invading glioma cells based on IDH1-R132H and Ki-67 immunofluorescence. Brain Tumor Pathol 2014;31(4):242-46. DOI: 10.1007/s10014-013-0172-y

31. Scherer H.J. Structural development in gliomas. Am J Cancer 1938;34(3):333—51.

32. Munthe S., Petterson S.A., Dahlrot R.H. et al. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype. PLoS One 2016;11(5). DOI: 10.1371/journal.pone.0155106.

33. Ziegler D.S., Kung A.L., Kieran M.W. Anti-apoptosis mechanisms in malignant gliomas. J Clin Oncol 2008;26(3):493—500. DOI: 10.1200/JCO.2007.13.9717.

34. Ceccarelli M., Barthel F.P., Malta T.M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016;164(3):550—63. DOI: 10.1016/j.cell.2015.12.028.

35. Suva M.L., Rheinbay E., Gillespie S.M. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014;157(3):580—94. DOI: 10.1016/j.cell.2014.02.030.

36. Mao P., Joshi K., Li J. et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A. 2013;110(21):8644—49. DOI: 10.1073/pnas.1221478110.

37. Kathagen A., Schulte A., Balcke G. et al. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol 2013;126(5):763—80. DOI: 10.1007/s00401-013-1173-y.

38. Vlashi E., Lagadec C., Vergnes L. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A 2011;108(38):16062—7. DOI: 10.1073/pnas.1106704108.

39. Kim H., Siyuan Zheng S., Amini S.S. et al. Whole-genome and multisector exome sequencing of primary and posttreatment glioblastoma reveals patterns of tumor evolution. Genome Res 2015; 25(3):316—27. DOI: 10.1101/gr.180612.114.

40. Wang J., Cazzato E., Ladewig E. et al. Clonal evolution of glioblastoma under therapy. Nat Genet 2016;48(7):768—76. DOI: 10.1038/ng.3590.

41. Bouffet E., Larouche V., Campbell B.B. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 2016;34(19):2206—11. DOI: 10.1200/JCO.2016.66.6552.

42. Chiocca E.A., Blair D., Mufson R.A. Oncolytic viruses targeting tumor stem cells. Cancer Res 2014;74(13):3396—8. DOI: 10.1158/0008-5472.CAN-14-0290.

43. Post D.E., Devi N.S., Li Z. et al. Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors. Clin Cancer Res 2004;10(24):8603—12. DOI: 10.1158/1078-0432.CCR-04-1432.

44. Post D.E., Sandberg E.M., Kyle M.M. et al. Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Res 2007;67(14):6872—81. DOI: 10.1158/0008-5472.CAN-06-3244.

45. Hitchcock S.A. Blood-brain barrier permeability considerations for CNS-targeted compound library design. Curr Opin Chem Biol 2008;12(3):318—23. DOI: 10.1016/j.cbpa.2008.03.019.

46. Pardridge W.M. Blood-brain barrier delivery. Drug Discov Today 2007;12(1—2):54—61. DOI: 10.1016/j.drudis.2006.10.013.

47. Weiss N., Miller F., Cazaubon S., Cou-raud P.O. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 2009;1788(4):842—57. DOI: 10.1016/j.bbamem.2008.10.022.

48. Chen L., Li X., Liu L. et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-y-lyase function. Oncol Rep 2015;33(3):1465—74. DOI: 10.3892/ОГ.2015.3712.

49. Watkins S., Robel S., Kimbrough I.F. et al. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 2014;5:4196. DOI: 10.1038/ncomms5196.

50. Wen L., Tan Y., Dai S. et al. VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy. Drug Deliv 2017;24(1):1843—55. DOI: 10.1080/10717544.2017.1386731.

51. Shannon R.J., Carpenter K.L., Guil-foyle M.R. et al. Cerebral microdialysis in clinical studies of drugs: Pharmacokinetic applications. J Pharmacokinet Pharmacodyn 2013;40(3):343—58. DOI: 10.1007/s10928-013-9306-4.

52. Liu S.J., Yang T.C., Yang S.T. et al. Biodegradable hybrid-structured nanofibrous membrane supported chemoprotective gene therapy enhances chemotherapy tolerance and efficacy in malignant glioma rats. Artif Cells Nanomed Biotechnol 2018;46(sup2):515—26. DOI: 10.1080/21691401.2018.1460374.

53. Pompe R.S., von Bueren A.O., Mynarek M. et al. Intraventricular methotrexate as part of primary therapy for children with infant and/or metastatic medulloblastoma: Feasibility, acute toxicity and evidence for efficacy. Eur J Cancer 2015;51(17):2634—42. DOI: 10.1016/j.ejca.2015.08.009.

54. Thomas E., Colombeau L., Gries M. et al. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. Int J Nanomedicine 2017;12:7075-88. DOI: 10.2147/IJN.S141559.

55. Nafee N., Gouda N. Nucleic Acids-based Nanotherapeutics crossing the blood brain barrier. Curr. Gene Ther 2017;17(2):154—69. DOI: 10.2174/1566523217666170510155803.

56. Miller J.J., Wen P.Y. Emerging targeted therapies for glioma. Expert Opin Emerg Drugs 2016;21(4):441—52. DOI: 10.1080/14728214.2016.1257609.

57. Sampson J.H., Heimberger A.B., Archer G.E. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28(31):4722—29. DOI: 10.1200/JCO.2010.28.6963.

58. Medawar P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948;29(1):58—69.

59. Louveau A., Smirnov I., Keyes T.J. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337-41. DOI: 10.1038/nature14432.

60. Greter M., Heppner F.L., Lemos M.P. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 2005; 11(3):328—34. DOI: 10.1038/nm1197.


Review

For citations:


Mitrofanov A.A., Naskhletashvili D.R., Aleshin V.A., Belov D.M., Bekyashev A.Kh., Karakhan V.B., Sevyan N.V., Prozorenko E.V., Roshchina K.E. Causes of drug resistance and glioblastoma relapses. Head and Neck Tumors (HNT). 2021;11(1):101-108. (In Russ.) https://doi.org/10.17650/2222-1468-2021-11-1-101-108

Views: 753


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)