Preview

Head and Neck Tumors (HNT)

Advanced search

Adaptive immune response in pathogenesis and treatment of head and neck squamous cell carcinoma: the influence of immunosuppression factors and gender

https://doi.org/10.17650/2222-1468-2022-12-3-114-126

Abstract

An obvious trend of the last decade in head and neck squamous cell carcinoma pathogenesis evaluation is awareness of the impact of immune response disorders on disease manifestation. The review presents an analysis of the differences in the type and degree of immunosuppression, as well as treatment response in head and neck squamous cell carcinoma patients in accordance with influencing carcinogenic factor, gender, age of the patient and concomitant diseases. An increase in CD8+ T-lymphocytes and a decrease of memory T-cells has been evaluated in smoking and alcohol abusing patients with head and neck squamous cell carcinoma, and a smaller number of CD8+ T-lymphocytes were detected in the tumor microenvironment compared to non-smoking and non-drinking patients. Studies have shown that the improved prognosis of patients with human papillomavirus (Hpv) – associated head and neck squamous cell carcinoma is largely due to the presence of antibodies against Hpv E6 and E7, E7-specific CD8+T lymphocytes in periphe ral blood and a high level of tumor-infiltrating T lymphocytes. The issue of gender differences in the type of immune response is widely discussed. It has been shown that the use of immune response checkpoint inhibitors is more effective in improving survival rates in men, and the use of these drugs in combination with chemotherapy is more effective in women. In addition, in elderly cancer patients, numerous age-associated T-lymphocyte’s function changes were revealed, including a decrease in the number of naive T-lymphocytes due to age-related involution of the thymus and an in crease in the relative number of memory cells and effector cells. Thus, it is clear that immunosuppression type, as well as treatment response, differ depending on the influencing factor, gender, age of the patient, as well as comorbidities.

About the Authors

A. I.  Stukan
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia
Russian Federation

Anastasia Igorevna Stukan

Oncology with the course of thoracic surgery of advanced training and professional retraining of specialists department

146 Dimitrova St., Krasnodar 350040

140 Rossiyskaya St., Krasnodar 350029



R.  A. Murashko
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia
Russian Federation

Oncology with the course of thoracic surgery of advanced training and professional retraining of specialists department

146 Dimitrova St., Krasnodar 350040

140 Rossiyskaya St., Krasnodar 350029



N. A. Tsygan
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory
Russian Federation

146 Dimitrova St., Krasnodar 350040

 



A. Yu. Goryainova
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia
Russian Federation

Oncology with the course of thoracic surgery of advanced training and professional retraining of specialists department

146 Dimitrova St., Krasnodar 350040

140 Rossiyskaya St., Krasnodar 350029



O. N. Nefedov
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia
Russian Federation

Oncology with the course of thoracic surgery of advanced training and professional retraining of specialists department

146 Dimitrova St., Krasnodar 350040

140 Rossiyskaya St., Krasnodar 350029



V. A. Porkhanov
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia; S.V. Ochapovsky Research Institute – Regional Clinical Hospital No. 1, Ministry of Health of Krasnodar Territory
Russian Federation

Oncology with the course of thoracic surgery of advanced training and professional retraining of specialists department

146 Dimitrova St., Krasnodar 350040

140 Rossiyskaya St., Krasnodar 350029

167 May 1 St., Krasnodar 350086



References

1. Pelaez-Prestel H.F., Sanchez-Trincado J.L., Lafuente E.M., Reche P.A. Immune tolerance in the oral mucosa. Int J Mol Sci 2021;22(22):12149. DOI: 10.3390/ijms222212149

2. Silva-Sanchez A., Randall T.D. Anatomical uniqueness of the mucosal immune system (GALT, NALT, iBALT) for the induction and regulation of mucosal immunity and tolerance. Mucosal Vaccines 2020:21–54. DOI: 10.1016/b978-0-12-811924-2.00002-x. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149644/

3. Wu R.-Q., Zhang D.F., Tu E. et al. The mucosal immune system in the oral cavity – an orchestra of T cell diversity. Int J of Oral Sci 2014;6(3):125–32. DOI: 10.1038/ijos.2014.48

4. Park J.Y., Chung H., DiPalma D.T. et al. Immune quiescence in the oral mucosa is maintained by a uniquely large population of highly activated Foxp3(+) regulatory T cells. Mucosal Immunol 2018;11(4):1092–102. DOI: 10.1038/s41385-018-0027-2

5. Lee W., Lee G.R. Transcriptional regulation and development of regulatory T cells. Exp Mol Med 2018;50(3):e456. DOI: 10.1038/ emm.2017.313

6. Yadav M., Louvet C., Davini D. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 2012;209:1713–22. DOI: 10.1084/jem.20120822

7. Weiss J.M., Bilate A.M., Gobert M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosagenerated induced Foxp3+ T reg cells. J Exp Med 2012;209(10):1723–42. DOI: 10.1084/jem.20120914

8. Zhang Y., Guo, J., Jia R. Treg: a promising immunotherapeutic target in oral diseases. Front Immunol 2021;12:2195. DOI: 10.3389/ fimmu.2021.667862

9. Francisconi C.F., Vieira A.E., Biguetti et al. Characterization of the protective role of regulatory T cells in experimental periapical lesion development and their chemoattraction manipulation as a therapeutic tool. J Endod 2016;42(1):120–6. DOI: 10.1016/j. joen.2015.09.022

10. Fonseca V.R., Graca L. Contribution of FoxP3(+) Tfr cells to overall human blood CXCR5(+) T cells. Clin Exp Immunol 2019;195(3):302–4. DOI: 10.1111/cei.13245

11. Dar A.A., Patil R.S., Pradhan et al. Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma. Cancer Immunol Immunother 2020;69(6):1071–86. DOI: 10.1007/s00262-020-02523-w

12. Pang X., Fan H.Y., Tang Y.L. et al. Myeloid-derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma. PLoS ONE 2020;15(2):e0229089. DOI: 10.1371/journal.pone.0229089

13. Zhong L.M., Liu Z.G., Zhou X. et al. Expansion of PMN-myeloid derived suppressor cells and their clinical relevance in patients with oral squamous cell carcinoma. Oral Oncol 2019;95:157–63. DOI: 10.1016/j.oraloncology.2019.06.004

14. Shapouri-Moghaddam A., Mohammadian S., Vazini H. et al. A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018;233(9):6425–40. DOI: 10.1002/jcp.26429

15. Fridman W.H. From cancer immune surveillance to cancer immunoediting: birth of modern immuno-oncology. J Immunol 2018;201(3):825e826. DOI: 10.4049/jimmunol.1800827

16. Perri F., Ionna F., Scarpati G.D.V. et al. Translational research: a future strategy for managing squamous cell carcinoma of the head and neck? Anticancer Agents Med Chem 2018;18(9):1220e1227. DOI: 10.2174/1871520618666180411110036

17. Butt S.U., Malik L. Role of immunotherapy in bladder cancer: past, present and future. Cancer Chemother Pharmacol 2018;81(4):629e645. DOI: 10.1007/s00280-018-3518-7

18. Scarpati D.V.G., Fusciello C., Perri F. et al. Ipilimumab in the treatment of metastatic melanoma: management of adverse events. Onco Targets Ther 2014;7:203e209. DOI: 10.2147/ott.s57335

19. Marra A., Ferrone C.R., Fusciello C. et al. Translational research in cutaneous melanoma: new therapeutic perspectives. Anticancer Agents Med Chem 2018;18(2):166e181. DOI: 10.2174/1871520618666171219115335

20. Mahoney K.M., Freeman G.J., McDermott D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 2015;37(4):764e782. DOI: 10.1016/j.clinthera.2015.02.018

21. Ferri T.F., Ionna F., Carpati G.V.C. et al. Immune response against head and neck cancer: biological mechanisms and implication on therapy. Translational Oncology 2020;13(2):262–74. DOI: 10.1016/j.tranon.2019.11.008

22. Schipmann S., Wermker K., Schulze H.J. et al. Cutaneous and oral squamous cell carcinoma-dual immunosuppression via recruitment of FOXP3C regulatory T cells and endogenous tumour FOXP3 expression? J Craniomaxillofac Surg 2014;42(8):1827–33. DOI: 1016/j.jcms.2014.06.022

23. Tanaka A., Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017;27(1):109e118. DOI: 10.1038/cr.2016.151

24. Yu J., Zhang H., Sun S. et al. The effects of Tim-3 activation on T-cells in gastric cancer progression. Oncol Lett 2019;17(2):1461–6. DOI: 10.3892/ol.2018.9743

25. Sheng C.C., Han F.Y. Immunoregulation effects of TIM-3 on tumors. Neoplasma 2015;66(2):167e175. DOI: 10.4149/neo_2018_180610n385

26. De la Iglesia J.V., Slebos R.J.C., Martin-Gomez L. et al. Effects of tobacco smoking on the tumor immune microenvironment in head and neck squamous cell carcinoma. Clin Cancer Res 2020;26(6):1474–85. DOI: 10.1158/1078-0432.CCR-19-1769

27. Panek C.A., Ramos M.V., Mejias M.P. et al. Differential expression of the fractalkine chemokine receptor (CX3CR1) in human monocytes during differentiation. Cell Mol Immunol 2015;12(6):669–80. DOI: 10.1038/cmi.2014.116

28. Idel C., Loyal K., Rades D. et al. Smoking-, Alcohol-, and Agerelated alterations of blood monocyte subsets and circulating CD4/CD8 T cells in head and neck cancer. Biology 2022;11(5):658. DOI: 10.3390/biology11050658

29. Barnes T.A., Amir E. HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer 2017;117(4): 451–60. DOI: 10.1038/bjc.2017.220

30. Turksma A.W., Bontkes H.J., Van den Heuvel H. et al. Effector memory T-cell frequencies in relation to tumour stage, location and HPV status in HNSCC patients. Oral Dis 2013;19(6):577–84. DOI: 10.1111/odi.12037

31. Le Page A., Dupuis G., Larbi A. et al. Signal transduction changes in CD4(+) and CD8(+) T cell subpopulations with aging. Exp Gerontol 2018;105:128–39. DОI: 10.1016/j.exger.2018.01.005

32. Jeske S.S., Schuler P.J., Doescher J. et al. Age-related changes in T lymphocytes of patients with head and neck squamous cell carcinoma. Immun Ageing 2020;17:3. DOI: 10.1186/s12979-020-0174-7

33. Desrichard A., Kuo F., Chowell D. et al. Tobacco smokingassociated alterations in the immune microenvironment of squamous cell carcinomas. J Natl Cancer Inst 2018;110(12):1386–92. DOI: 10.1093/jnci/djy060

34. Ferris R.L., Blumenschein G., Fayette J. et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 2018;81:45–51. DOI: 10.1016/j.oraloncology.2018.04.008

35. Solomon B., Young R.J., Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol 2018;52(2):228–40. DOI: 10.1016/j.semcancer.2018.01.008

36. Smith E.M., Pawlita M., Rubenstein L.M. et al. Risk factors and survival by HPV-16 E6 and E7 antibody statusin human papillomavirus positive head and neck cancer. Int J Cancer 2010;127(1):111–7. DOI: 10.1002/ijc.25015

37. Lang Kuhs K.A., Kreimer A.R., Trivedi S. et al. Human papillo mavirus 16 E6 antibodies are sensitive for human papillomavirus – driven oropharyngeal cancer and are associated with recurrence. Cancer 2017;123(22):4382–90. DOI: 10.1002/cncr.30966

38. Kreimer A.R., Johansson M., Waterboer T. et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J Clin Oncol 2013;31(21):2708–15. DOI: 10.1200/ JCO.2012.47.2738

39. Wang H., Wang S., Tang Y-J. et al. The double-edged sword – how human papillomaviruses interact with immunity in head and neck cancer. Front Immunol 2019;10:653. DOI: 10.3389/fimmu.2019. 00653

40. King E.V., Ottensmeier C.H., Thomas G.J. The immune response in HPV+ oropharyngeal cancer. Oncoimmunology 2014;3(1):e27254. DOI: 10.4161/onci.27254

41. Partlová S., Boucek J., Kloudová K. et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPVassociated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology 2015;4(1):e965570. DOI: 10.4161/21624011.2014.965570

42. Solomon B., Young R.J., Bressel M. et al. Prognostic significance of PD-L1+ and CD8+ immune cells in HPV+ oropharyngeal squamous cell carcinoma. Cancer Immunol Res 2018;6(3):295–303. DOI: 10.1158/2326-6066.CIR-17-0299

43. Masterson L., Lechner M., Loewenbein S. et al. CD8+ T cell response to human papillomavirus 16 E7 is able to predict survival outcome in oropharyngeal cancer. Eur J Cancer 2016;67:141–51. DOI: 10.1016/j.ejca.2016.08.012

44. Welters M.J.P, Ma W., Santegoets S.J.A.M. et al. Intratumoral HPV16-Specific T cells constitute a type I-oriented tumor microenvironment to improve survival in HPV16-driven oropharyngeal cancer. Clin Cancer Res 2018;24(3):634–47. DOI: 10.1158/1078-0432.CCR-17-2140

45. Krupar R., Robold K., Gaag D. et al. Immunologic and metabolic characteristics of HPV-negative and HPV-positive head and neck squamous cell carcinomas are strikingly different. Virchows Arch 2014;465(3):299–312. DOI: 10.1007/s00428-014-1630-6

46. Oguejiofor K., Hall J., Slater C. et al. Stromal infiltration of CD8 T cells is associated with improved clinical outcome in HPV-positive oropharyngeal squamous carcinoma. Br J Cancer 2015;113(6):886–93. DOI: 10.1038/bjc.2015.277

47. Lechnera A., Schlößerb H.A., Thelenb M. et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma Oncoimmunology 2019;8(3):e1535293. DOI: 10.4161/onci.24065

48. Svensson M.C., Warfvinge C.F., Fristedt R. et al. The integrative clinical impact of tumor-infiltrating T lymphocytes and NK cells in relation to B lymphocyte and plasma cell density in esophageal and gastric denocarcinoma. Oncotarget 2017;8(42):72108–26. DOI: 10.18632/oncotarget.v8i42

49. Mahale P., Sturgis E.M., Tweardy D.J. et al. Association between hepatitis C virus and head and neck cancers. J Natl Cancer Inst 2016;108(8):djw035. DOI: 10.1093/jnci/djw035

50. Heim M.H.,Thimme R. Innate and adaptive immune responses in HCV infections. J Hepatol 2014;61(1 Supple):S14–25. DOI: 10.1016/j.jhep.2014.06.035

51. Irelli A., Sirufo M.M., D’Ugo C. et al. Sex and gender influences on cancer Immunotherapy response. Biomedicines 2020;8(7):232. DOI: 10.3390/biomedicines8070232

52. Ortona E., Pierdominici M., Rider V. Editorial: Sex hormones and gender differences in immune responses. Front Immunol 2019;10:1076. DOI: 10.3389/fimmu.2019.01076

53. Pellegrini P., Contasta I., DelBeato T. et al. Gender-specific cytokine pathways, targets, and biomarkers for the switch from health to adenoma and colorectal cancer. Clin Dev Immunol 2011;819724. DOI: 10.1155/2011/819724

54. Furman D., Hejblum B.P., Simon N. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci USA 2014;111(2):869–74. DOI: 10.1073/pnas.1321060111

55. Conforti F., Pala L., Bagnardi V. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol 2018;19(6):737–46. DOI: 10.1016/s1470-2045(18)30261-4

56. Garutti P., Montori S., Bazzan E., Tarabbia C. Gender differences in the epidemiology and prevention of human papillomavirus (HPV) and HPV-related diseases. Ital J Gender-Specific Med 2018;4(4):152–61. DOI: 10.1723/3091.30836

57. Mohamad N., Wong S., Hasan W.N.W. et al. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 2019;22(2):129–40. DOI: 10.1080/13685538.2018.1482487

58. Pala L., Nezi L., de Pas T. et al. Sex differences in efficacy and toxicity of systemic cancer treatments: role of the microbiome. J Clin Oncol 2019;37(5):439. DOI: 10.1200/jco.18.01270

59. Wagner A.D., Oertelt-Prigione S., Adjei A. et al. Gender medicine and oncology: report and consensus of an ESMO workshop. Ann Oncol 2019;30(12):1914–24. DOI: 10.1093/annonc/mdz414

60. Jäger U., Fridrik M.A., Zeitlinger M. et al. Rituximab serum concentrations during immuno-chemotherapy of follicular lymphoma correlate with patient gender, bone marrow infiltration and clinical response. Haematologica 2012;97(9):1431–8. DOI: 10.3324/haematol.2011.059246

61. Wang S., He Z., Wang X. et al. Can tumor mutational burden determine the most effective treatment for lung cancer patients? Lung Cancer Mana 2020;8(4):LMT21. DOI: 10.2217/lmt-2019-0013

62. Pinto J.A., Vallejos C.S., Raez L.E. et al. Gender and outcomes in non-small cell lung cancer: an old prognostic variable comes back for targeted therapy and immunotherapy? ESMO Open 2018;3(3):e000344. DOI: 1136/esmoopen-2018-000344

63. Ruggieri A., Malorni W., Ricciardi W. Gender disparity in response to anti-viral vaccines: new clues toward personalized vaccinology Ital J Gender-Specific Med 2016;2(3):93–8. DOI: 10.1007/978-3-319-25832-4_1

64. Conforti F., Pala L., Bagnardi V. et al. Sex-based heterogeneity in response to lung cancer immunotherapy: A systematic review and meta-analysis. J Natl Cancer Inst 2019;111(8):772–81. DOI: 10.1093/jnci/djz094

65. Frasor J., Danes J.M., Komm B. et al. Profiling of estrogen up-and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 2003;144(10):4562–74. DOI: 10.1210/en.2003-0567

66. Tobillo R., De Joya E., Dooley S. et al. Female sex and increased immune marker mRNA gene expression are associated with decreased overall survival in patients with HPV-negative head and neck cancer. Int J Rad Oncol Biol Phys 2021;111:(3S):e238–9. DOI: 10.1016/j.ijrobp.2021.07.810

67. Jeske S.S., Schuler P.I., Doescher J. et al. Age-related changes in T lymphocytes of patients with head and neck squamous cell carcinoma. Immun Ageing 2020;17:3. DOI: 10.1186/s12979-020-0174-7

68. Maggiore R., Zumsteg Z.S., BrintzenhofeSzoc K. et al. The older adult with Locoregionally advanced head and neck squamous cell carcinoma: knowledge gaps and future direction in assessment and treatment. Int J Radiat Oncol Biol Phys 2017;98(4):868–83. DOI: 10.1016/j.ijrobp.2017.02.022

69. Bottazzi B., Riboli E., Mantovani A. Aging, inflammation and cancer. Semin Immunol 2018;40:74–82. DOI: 10.1016/j.smim.2018.10.011

70. Saavedra D., Garcia B., Lage A. T cell subpopulations in healthy elderly and lung Cancer patients: insights from Cuban studies. Front Immunol 2017;8:146. DOI: 10.3389/fimmu.2017.00146

71. Saavedra D., Garcia B., Lorenzo-Luaces P. et al. Biomarkers related to immunosenescence: relationships with therapy and survival in lung cancer patients. Cancer Immunol Immunother 2016;65(1):37–45. DOI: 10.1007/s00262-015-1773-6

72. Constantinidou A., Alifieris C., Trafalis D.T. Targeting programmed cell death −1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 2018;194:84–106. DOI: 10.1016/j.pharmthera.2018.09.008

73. Seiwert T.Y., Burtness B., Mehra R. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016;17(7):956. DOI: 10.1016/s1470-2045(16)30066-3

74. Ferris R.L., Blumenschein G., Fayette J. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375(19):1856–67. DOI: 10.1056/nejmoa1602252

75. Shang B., Liu Y., Jiang S.J., Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 2015;5:15179. DOI: 10.1038/srep15179

76. Zumsteg Z.S., Cook-Wiens G., Yoshida E. et al. Incidence of Oropharyngeal Cancer among elderly patients in the United States. JAMA Oncol 2016;2(12):1617–23. DOI: 10.1001/jamaoncol.2016.1804


Review

For citations:


Stukan A.I., Murashko R.A., Tsygan N.A., Goryainova A.Yu., Nefedov O.N., Porkhanov V.A. Adaptive immune response in pathogenesis and treatment of head and neck squamous cell carcinoma: the influence of immunosuppression factors and gender. Head and Neck Tumors (HNT). 2022;12(3):114-126. (In Russ.) https://doi.org/10.17650/2222-1468-2022-12-3-114-126

Views: 337


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)