ANALYSIS OF A MIRNA SET (MIR-21, -181A, AND -146A) AS A METHOD OF DIFFERENTIAL DIAGNOSIS OF THYROID NODULES
https://doi.org/10.17650/2222-1468-2017-7-2-16-24
Abstract
Introduction. In clinical practice, differential diagnosis of nodular thyroid diseases poses a serious problem which can be solved by development of new, safe, and specific thyroid tumor markers. Small regulatory RNAs (microRNA, miRNA) are a class of molecules that control gene expression at the post-transcriptional level. miRNAs, both intracellular and secreted into the extracellular space, can be used as markers of various diseases, including cancer. Stability of extracellular miRNAs is determined by binding to proteins and lipoproteins, or by “packing” into membrane microvesicles – exosomes. It is considered that exosomes with specific miRNA content are a result of active and biologically significant secretion, while release of other forms of miRNA is associated with apoptotic or necrotic cell death. This determines diagnostic value of exosomal fraction of circulating miRNAs, which may reflect presence or clinically significant properties of a tumor.
The study objective was to explore a method of exosomal miRNA isolation, identify marker miRNAs, and estimate diagnostic value of their analysis.
Methods. We used serum samples from 57 patients with nodular thyroid diseases and 13 healthy donors. Exosomes were isolated from serum by ultracentrifugation and analyzed by atomic force microscopy, laser correlation spectroscopy, and western blotting. Analysis of exosomal miRNAs was carried out by RT-PCR.
Results. We have identified a specific correlation between certain miRNAs and status of thyroid nodular disease. Expression profiles of three miRNAs (miRNA-21, miRNA-146a, and miRNA-181a) exhibited specific characteristics for different forms of nodular thyroid disease and their analysis may have diagnostic value.
Conclusions. Exosomes isolated by ultracentrifugation from serum are a source of RNA suitable for subsequent analysis of miRNA. The levels of different miRNAs in serum exosomes may differ by 1–2 times. «Marker» exosomal miRNAs have specific profiles in circulating exosomes of patients with different thyroid nodules. Clinical significance of testing exosomal miRNAs in patients with benign and malignant nodules of the thyroid gland can be increased by a parallel assessment of several molecules and analysis of the profile of their representation in exosomes. MiRNA-181a, -146a, and -21 form a diagnostic combination of «marker» molecules present in the circulating exosomes, which can be extended and used for diagnosis (differential diagnosis) of thyroid nodules.
About the Authors
R. B. SamsonovRussian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758; 70 Leningradskaya St., Pesochnyy Settlement, Saint-Petersburg 197758; room 16, 4–9 Lugovaya St., Skolkovo Innovation Center, Moscow 143026
V. S. Burdakov
Russian Federation
1 Orlova Roshcha, Gatchina, Leningrad District 188300
T. A. Shtam
Russian Federation
1 Orlova Roshcha, Gatchina, Leningrad District 188300; room 16, 4–9 Lugovaya St., Skolkovo Innovation Center, Moscow 143026
Z. A. Radzhabova
Russian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
Y. V. Cheburkin
Russian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758; room 16, 4–9 Lugovaya St., Skolkovo Innovation Center, Moscow 143026
D. A. Vasilyev
Russian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
E. V. Tsyrlina
Russian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
S. E. Titov
Russian Federation
8/2 Akademika Lavrentieva Av., Novosibirsk 630090; Koltsovo Settlement, Novosibirsk District 630559
M. К. Ivanov
Russian Federation
8/2 Akademika Lavrentieva Av., Novosibirsk 630090
M. V. Filatov
Russian Federation
1 Orlova Roshcha, Gatchina, Leningrad District 188300
L. M. Berstein
Russian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
N. N. Kolesnikov
Russian Federation
8/2 Akademika Lavrentieva Av., Novosibirsk 630090
А. V. Malek
Russian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758; 1 Orlova Roshcha, Gatchina, Leningrad District 188300; room 16, 4–9 Lugovaya St., Skolkovo Innovation Center, Moscow 143026
References
1. Валдина Е.А. Заболевания щитовидной железы. СПб.: Питер, 2013. [Valdina E.A. Diseases of the thyroid gland. Saint Petersburg: Piter, 2013. (In Russ.)].
2. Dean D.S., Gharib H. Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab 2008;22(6):901–11. DOI: 10.1016/j.beem.2008.09.019. PMID: 19041821.
3. Luster M., Weber T., Verburg F.A. Differentiated thyroid cancer-personalized therapies to prevent overtreatment. Nat Rev Endocrinol 2014;10(9):563–74. DOI: 10.1038/nrendo.2014.100. PMID: 24981455.
4. Kato M.A., Fahey T.J. Molecular markers in thyroid cancer diagnostics. Surg Clin North Am 2009;89 (5):1139–55. DOI: 10.1016/j.suc.2009.06.012. PMID: 19836489.
5. Zipeto M.A., Jiang Q., Melese E., Jamieson C.H. RNA rewriting, recoding, and rewiring in human disease. Trends Mol Med 2015;21(9):549–59. DOI: 10.1016/j.molmed.2015.07.001. PMID: 26259769.
6. Di Leva G., Garofalo M., Croce C.M. MicroRNAs in cancer. Ann Rev Pathol 2014;9:287–314. DOI: 10.1146/annurev-pathol-012513–104715. PMID: 24079833.
7. Forte S., La Rosa C., Pecce V. et al. The role of microRNAs in thyroid carcinomas. Anticancer Res 2015;35(4):2037–47. PMID: 25862858.
8. Колесников Н.Н., Титов С.Е., Веряскина Ю.А. и др. МикроРНК, эволюция и рак. Цитология 2013; 55(3):159–64. [Kolesnikov N.N., Titov S.E., Veriaskina Iu.A. et al. MicroRNA, evolution, and cancer. Tsitologiia = Cytology 2013;55(3):159–64. (In Russ.)].
9. Nikiforova M.N., Chiosea S.I., Nikiforov Y.E. MicroRNA expression profiles in thyroid tumors. Endocr Pathol 2009;20(2):85–91. DOI: 10.1007/s12022-009-9069-z. PMID: 19352602.
10. Колесников Н.Н., Титов С.Е., Жимулев И.Ф. МикроРНК в диагностике рака. Наука в России 2013;6(198):27–33. [Kolesnikov N.N., Titov S.E., Zimulev I.F. MicroRNA in cancer diagnostics. Nauka v Rossii = Science in Russia 2013;6 (198):27–33. (In Russ.)].
11. Sato-Kuwabara Y., Melo S.A., Soares F.A., Calin G.A. The fusion of two worlds: non-coding RNAs and extracellular vesicles-diagnostic and therapeutic implications (Review). Int J Oncol 2015;46(1):17–27. DOI: 10.3892/ijo.2014.2712. PMID: 25338714.
12. Zhang J., Li S., Li L. et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015;13(1):17–24. DOI: 10.1016/j.gpb.2015.02.001. PMID: 25724326.
13. Малек А.М., Берштейн Л.М., Филатов М.В., Беляев А.М. Система экзосомальных межклеточных коммуникаций и ее роль в процессе метастатической диссеминации. Вопросы онкологии 2014;60(4):429–36. [Malek A.V., Berstein L.M., Filatov M.V., Belyaev A.M. System of exosomal cell communications and its role in the process of metastatic dissemination. Voprosy onkologii = Problems in Oncology 2014;60(4): 429–36]. (In Russ.)].
14. Ye S.B., Li Z.L., Luo D.H. et al. Tumorderived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2014;5(14):5439–52. DOI: 10.18632/oncotarget.2118. PMID: 24978137.
15. Rana S., Malinowska K., Zoller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013;15(3):281–95. PMID: 23479506.
16. Challagundla K.B., Wise P.M., Neviani P. et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 2015;107(7). DOI: 10.1093/jnci/djv135. PMID: 25972604.
17. Yu S., Liu Y., Wang J. et al. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 2012;97 (6):2084–92. DOI: 10.1210/jc.2011–3059. PMID: 22472564.
18. Lee J.C., Zhao J.T., Clifton-Bligh R.J. et al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer 2013;119(24):4358–65. DOI: 10.1002/cncr.28254. PMID: 24301304.
19. Lee Y.S., Lim Y.S., Lee J.C. et al. Differential expression levels of plasmaderived miR-146b and miR-155 in papillary thyroid cancer. Oral Oncol 2015;51 (1):77–83. DOI: 10.1016/j.oraloncology.2014.10.006. PMID: 25456009.
20. Ferracin M., Lupini L., Salamon I. et al. Absolute quantification of cell-free microRNAs in cancer patients. Oncotarget 2015;6(16):14545–55. DOI: 10.18632/oncotarget.3859. PMID: 26036630.
21. Chevillet J.R., Kang Q., Ruf I.K. et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 2014;111(41):14888–93. DOI: 10.1073/pnas.1408301111. PMID: 25267620.
22. Cha D.J., Franklin J.L., Dou Y. et al. KRAS-dependent sorting of miRNA to exosomes. Elife 2015;1(4): e07197. DOI: 10.7554/eLife.07197.PMID: 26132860.
Review
For citations:
Samsonov R.B., Burdakov V.S., Shtam T.A., Radzhabova Z.A., Cheburkin Y.V., Vasilyev D.A., Tsyrlina E.V., Titov S.E., Ivanov M.К., Filatov M.V., Berstein L.M., Kolesnikov N.N., Malek А.V. ANALYSIS OF A MIRNA SET (MIR-21, -181A, AND -146A) AS A METHOD OF DIFFERENTIAL DIAGNOSIS OF THYROID NODULES. Head and Neck Tumors (HNT). 2017;7(2):16-24. (In Russ.) https://doi.org/10.17650/2222-1468-2017-7-2-16-24