Preview

Head and Neck Tumors (HNT)

Advanced search

ARTERIAL HYPERTENSION DURING THERAPY OF ONCOLOGICAL DISEASES WITH ANGIOGENESIS INHIBITORS: SERIOUS IMPEDIMENT OR CONTROLLED REACTION?

https://doi.org/10.17650/2222-1468-2017-7-2-70-80

Abstract

Vascular endothelial growth factor signaling pathway (VSP) inhibitors are drugs for which arterial hypertension (AH) is a class effect, occurring with a frequency of up to 73 % of treated patients. Blockade of vascular endothelial growth factor or its receptor is accompanied by inhibition of the synthesis of nitric oxide, which is considered a major pathogenic mechanism for the development of AH. VSP-inhibitors therapy will be as safe as possible, if the patient prior to treatment will take a minimum assessment, allowing to identify the category of patients with high/very high cardiovascular risk. Risk evaluation is necessary not to abandon an effective therapy of VSP-inhibitors, and to provide a systematic approach to reduce the likelihood of potential cardiovascular toxicity. Blood pressure during VSP-inhibitors therapy is characterized by a rapid rise after the first dose of target therapy, as a rule, in the first cycle of treatment, ranging from no increase to double the systolic blood pressure. Usually iatrogenic AH spontaneously resolves after stopping chemotherapy. Timely prescribed antihypertensive therapy help to avoids dose reduction or interruption of the course of VSP-inhibitors, which significantly improves the survival of patients.

About the Authors

Zh. D. Kobalava
RUDN University
Russian Federation

6 Miklikho-Maklaya St., Moscow 117198



E. K. Shavarova
RUDN University
Russian Federation

6 Miklikho-Maklaya St., Moscow 117198



References

1. Yeh E.Т.Н., Bickford C.L. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 2009;53(24):2231–47. DOI: 10.1016/j.jacc.2009.02.050. PMID: 19520246.

2. Zamorano J.L., Lancellotti P., Rodriguez-Muñoz D. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 2016;37(36):2768–2801. DOI: 10.1093/eurheartj/ehw211. PMID: 27567406.

3. Maitland L.M., Bakris G.L., Black H.R. et al. Initial assessment, surveillance and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 2010;102(9):596–604. DOI: 10.1093/jnci/djq091.

4. Schlumberger M., Tahara M., Lori J. Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer. N Engl J Med 2015;372(7):621–30. DOI: 10.1056/NEJMoa1406470.

5. Kerbel R.S. Tumor angiogenesis. N Engl J Med 2008;358(19): 2039–49. DOI: 10.1056/NEJMra0706596.

6. Nazer B., Humphreys BD., Moslehi J. Effects of novel angiogenesis inhibitors for the treatment of cancer on the cardio-vascular system: focus on hypertension. Circulation 2011;124(15):1687–91. DOI: 10.1161/CIRCULATIONAHA.110.992230.

7. Hayman S.R., Leung N., Grande J.P., Garovic V.D. VEGF inhibition, hypertension, and renal toxicity. Curr Oncol Rep 2012;14(4):285–94. DOI: 10.1007/s11912-012-0242-z.

8. Zerbini G., Lorenzi M., Palini A. Tumor angiogenesis. N Engl J Med 2008;359(7):763; author reply 764. DOI: 10.1056/NEJMc081278.

9. Holmes K., Roberts O.L., Thomas A.M., Cross M.J. Vascular endothelial growth factor receptor-2: structure, function, intracellular signaling and therapeutic inhibition. Cell Signal 2007:19(10);2003–12. DOI: 10.1016/j.cellsig.2007.05.013. PMID: 17658244.

10. Mourad J.J., des Guetz G., Debbabi H., Levy B.I. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol 2008;19:927–34. DOI: 10.1093/annonc/mdm550. PMID: 18056916.

11. Steeghs N., Gelderblom H., Roodt J.O. et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res 2008;14(11):3470–6. DOI: 10.1158/1078-0432.CCR-07-5050.

12. Veronese M.L., Mosenkis A., Flaherty K.T. et al. Mechanisms of hypertension associated with BAY 43-9006. J Clin Oncol 2006;24(9):1363–9. DOI: 10.1200/JCO.2005.02.0503. PMID: 16446323.

13. Kappers M.H., van Esch J.H., Sluiter W. et al. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension 2010;56(4):675–81. DOI: 10.1161/HYPERTENSIONAHA.109. 149690.

14. Mir O., Ropert S., Alexandre J., Goldwasser F. Hypertension as a surrogate marker for the activity of anti-VEGF agents. Ann Oncol 2009;20(5):967–70. DOI: 10.1093/annonc/mdp206.

15. Azizi M., Chedid A., Oudard S. Home blood-pressure monitoring in patients receiving sunitinib. N Engl J Med 2008;358(1):95–7. DOI: 10.1056/NEJMc072330.

16. Piccirillo J.F., Tierney R.M., Costas I. et al. Prognostic Importance of Comorbidity in a Hospital-Based Cancer Registry. JAMA 2004;291(20):2441–7. DOI: 10.1001/jama.291.20.2441. PMID: 15161894.

17. Chu T.F., Rupnick M.A., Kerkela R. et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 2007;370(9604):2011–9. DOI: 10.1016/S0140-6736(07)61865-0.

18. Maitland M.L., Kasza K.E., Karrison T.G. et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. ClinCancerRes. 2009;15(19):6250–7. DOI: 10.1158/1078-0432.CCR-09-0058.

19. Maitland M.L., Bakris G.L., Black H.R. et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 2010;102(9):596–604. DOI: 10.1093/jnci/djq091.

20. Чазова И.Е., Ратова Л.Г., Бойцов С.А., Небиеридзе Д.В. Диагностика и лечение артериальной гипертензии. Российские рекомендации, четвертый пересмотр. Системные гипертензии 2010;(3):5–26. [Chazova I.E., Ratova L.G., Boytsov S.A., Nebieridze D.V. Diagnosis and treatment of hypertension. Russian recommendations, fourth revision. Sistemnye gipertenzii = Systemic Hypertension 2010;(3):5–26. (In Russ.)].

21. Mancia G., De Backer G., Dominiczak A. et al. 2013 The task force for the management of arterial hypertension of the european society of hypertension (ESH) and of the European society of cardiology (ESC). Eur Heart J 2013;34(28):2159–219. DOI: 10.1093/eurheartj/eht151.

22. Nazer B., Humphreys BD., Moslehi J. Effects of novel angiogenesis inhibitors for the treatment of cancer on the cardiovascular system: focus on hypertension. Circulation 2011;124(15):1687–91. DOI: 10.1161/CIRCULATIONAHA.110.992230.

23. Zhu X., Wu S., Dahut W.L. et al. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 2007;49:186–93. DOI: 10.1053/j.ajkd.2006.11.039. PMID: 17261421.

24. Powe D.G., Voss M.J., Zanker K.S. et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 2010;1(7):628–38. DOI: 10.18632/oncotarget.101009.

25. Barron T.I., Connolly R.M., Sharp L. et al. Beta blockers and breast cancer mortality: a population-based study. J Clin Oncol 2011;29(19):2635–44. DOI: 10.1200/JCO.2010.33.5422.

26. Melhem-Bertrandt A., Chavez-Macgregor M., Lei X. et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 2011;29(19): 2645–52. DOI: 10.1200/JCO.2010.33.4441.

27. Zhang D., Ma Q.Y., Hu H.T. et al. Beta2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting creb, nfkappab and ap-1. Cancer BiolTher 2010;10:19–29. PMID: 20424515.

28. Liao X., Che X., Zhao W. et al. The beta-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor kappa-b signaling. Oncol Rep 2010;24(6):1669–76. PMID: 21042766.

29. Park P.G., Merryman J., Orloff M. et al. Beta-adrenergic mitogenic signal transduction in peripheral lung adenocarcinoma: implications for individuals with preexisting chronic lung disease. Cancer Res 1995;55(16):3504–8. PMID: 7627955.

30. Yang E.V., Sood A.K., Chen M. et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngealcarcinoma tumor cells. Cancer Res 2006;66:10357–64. DOI: 10.1158/0008-5472.CAN-06-2496. PMID: 17079456.

31. Sood A.K., Bhatty R., Kamat A.A. et al. Stresshormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 2006;12:369–75. DOI: 10.1158/1078-0432.CCR-05-1698.

32. Pasquier E., Ciccolini J., Carre M. et al. Propranolol potentiates the antiangiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2011;2(10):797–809. DOI: 10.18632/oncotarget.343.


Review

For citations:


Kobalava Zh.D., Shavarova E.K. ARTERIAL HYPERTENSION DURING THERAPY OF ONCOLOGICAL DISEASES WITH ANGIOGENESIS INHIBITORS: SERIOUS IMPEDIMENT OR CONTROLLED REACTION? Head and Neck Tumors (HNT). 2017;7(2):70-80. (In Russ.) https://doi.org/10.17650/2222-1468-2017-7-2-70-80

Views: 798


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)