Possibilities of single photon emission tomography in the diagnosis of bone metastases in patients with disseminated medullary thyroid carcinoma (case report)
https://doi.org/10.17650/2222-1468-2019-9-2-81-87
Abstract
The study objective: using a clinical example to demonstrate possibilities of single photon emission computerized tomography (SPECT) in combination with computed tomography (CT) in identifying latent bone metastases, taking into account the dynamics growth of serum basal calcitonin.
Materials and methods. Patient S., 60 years old, visited N.N. Blokhin National Medical Research Center of Oncology for consultation on multiple lung metastases of cancer of unknown primary.
Results. Taking into account basal calcitonin level, immunohistochemistry, ultrasound investigation andfine-needle aspiration biopsy of the node in the right thyroid lobe a diagnose of medullary thyroid cancer was made. CT revealed multiple metastases in both lungs. Specialist erformed thyroidectomy with central lymphadenectomy and facial neck dissection on both sides. During next four months basal calcitonin level increased twice. Control contrast CT lung screening showed the growth of previously identified metastases and the appearance of multiple new ones. Bone scan showed focuses of increased radio-pharmaceutical accumulation in the area of 7h left rib, left iliac wing, in the left bones of cranial vault, in C7, Th6, Th9, ThI2 vertebrae and right foot bones. Additional examination using SPECT/CT (from the skull base to the hip joints) revealed metastases in corpuses of Th9, ThI2 vertebrae and the left iliac wing, and suspicion for metastasis in 7h left rib. Magnetic resonance imaging (MRI) confirmed metastasis in Th9, ThI2, L3 vertebral bodies and in the left iliac wing.
Conclusion. Conclusion. In this clinical example, SPECT/CT allowed to correctly detect metastases in both Th9 and ThI2 vertebrae while bone scan was questionable, and MRI showed an additional damage of L3 vertebra. Changes in the 7h left rib could not be verified using CT, although this changes may be an emerging metastasis. Obviously, extensive use of radiation methods does not guarantee complete identification of all pathological focuses, it therefore allows assessing the prevalence of the pathological process. It is crucially important to control calcitonin level in these patients, since its rapid growth allowed suspecting additional distant metastases.
About the Authors
E. E. StanyakinaRussian Federation
24 Kashirskoe Shosse, Moscow 115478
I. S. Romanov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
A. S. Krylov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
A. D. Ryzhkov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
K. D. Ilkaev
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
А. B. Bludov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
S. M. Kaspshik
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Wells S.A. Jr, Asa S.L., Dralle H. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015;25(6):567—610. DOI: 10.1089/thy.2014.0335.
2. Saad M.F., Ordonez N.G., Rashid R.K. et al. Medullary carcinoma of the thyroid. A study of the clinical features and prognostic factors in 161 patients. Medicine (Baltimore) 1984;63(6):319—42.
3. Samaan N.A., Schultz P.N., Hickey R.C. Medullary thyroid carcinoma: prognosis of familial versus sporadic disease and the role of radiotherapy. J Clin Endocrinol Metab 1988;67(4):801—5. DOI: 10.1210/jcem-67-4-801.
4. Norton J.A., Froome L.J., Farell R.E. et al. Multiple endocrine neoplasia type Ilb: the most aggressive form of medullary thyroid carcinoma. Surg Clin North Amer 1979;59(1):109-18.
5. Nelkin B.D., de Bustros A.C., Mabry M., Baylin S.B. The molecular biology of medullary thyroid carcinoma. A model for cancer development and progression. JAMA 1989;261(21):3130-5.
6. Gazizova D.O. Beltsevich D.G., Tiulpakov A.N. et al. Diagnosis of medullary thyroid cancer and prognostic factors of disease aggressiveness. Endokrinnaya khirurgiya = Endocrine Surgery 2013;7(4):4—13. (In Russ.). DOI: 10.14341/serg201344-13.
7. Papadakis G., Keramidas I., Triantafillou E. et al. Association of basal and calcium-stimulated calcitonin levels with pathological findings after total thyroidectomy. Anticancer Res 2015;35(7):4251—8.
8. Roman S., Lin R., Sosa J.A. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer 2006;107(9):2134-42. DOI: 10.1002/cncr.22244.
9. Ukkat J., Gimm O., Brauckhoff M. et al. Single center experience in primary surgery for medullary thyroid carcinoma. World J Surg 2004;28(12):1271 —4. DOI: 10.1007/s00268-004-7608-9.
10. Van Heerden J.A., Grant C.S., Gharib H. et al. Long-term course of patients with persistent hypercalcitoninemia after apparent curative primary surgery for medullary thyroid carcinoma. Ann Surg 1990;212(4):395—400. DOI: 10.1097/00000658-199010000-00002.
11. Pacini F., Fontanelli M., Fugazzola L. et al. Routine measurement of serum calcitonin in nodular thyroid diseases allows the preoperative diagnosis of unsuspected sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab 1994;78(4):826—9. DOI: 10.1210/jcem.78.4.8157706.
12. Cancer Medicine. Ed. by J.F. Holland, E. Frei III, R.C. Bast. 3rd edn. Philadelphia: Lea & Febiger, 1993.
13. Ryzhkov A.D., Krylov A.S., Shiryaev S.V. et al. The advantage of a combined SPECT/CT in the diagnosis of bone metastases. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ = Medical Radiology and Radiation Safety 2017;62(5):33—9. (In Russ.). DOI: 10.12737/article_59f2fc0812bc46.45377149.
14. Ryzhkov A.D., Krylov A.S., Bludov A.B., Shiryaev S.V. Osteoscintigraphy and SPECT/CT in the diagnosis of various variants of bone metastases. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ = Medical Radiology and Radiation Safety 2018;63(2):41—6. (In Russ.). DOI: 10.12737/article_5ac61fd62feba6.78437892.
15. Reubi J.C., Schaer J.C., Waser B., Mengod G. Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res 1994;54(13):3455—9.
16. Vaisman F., Rosado de Castro P.H., Lopes F.P. et al. Is there a role for peptide receptor radionuclide therapy in medullary thyroid cancer? Clin Nucl Med 2015;40(2):123—7. DOI: 10.1097/RLU.0000000000000628.
17. Waldherr C., Schumacher T., Pless M. et al. Radiopeptide transmitted internal irradiation of non-iodophil thyroid cancer and conventionally untreatable medullary thyroid cancer using. Nucl Med Commun 2001;22(6):673—8.
18. Salavati A., Puranik A., Kulkarni H.R. et al. Peptide receptor radionuclide therapy(PRRT) of medullary and nonmedullary thyroid cancer using radiolabeled somatostatin analogues. Semin Nucl Med 2016;46(3):215—24. DOI: 10.1053/j.semnuclmed.2016.01.010.
19. Cengic N., Baker C.H., SchUtz M. et al. A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy following tissue-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 2005;90(8):4457-64. DOI: 10.1210/jc.2004-2140.
20. Abdulkhabirova F.M., Beltsevich D.G., Vanushko V.E. et al. Medullary thyroid cancer: management guidelines. Endokrinnaya khirurgiya = Endocrine Surgery 2012;6(1):5-17.(In Russ.). DOI: 10.14341/2306-3513-2012-1-5-17.
21. Beltsevich D.G., Vanushko V.E., Rumiantsev P.O. et al. 2017 Russian clinical practice guidelines for differentiated thyroid cancer diagnosis and treatment. Endokrinnaya khirurgiya = Endocrine Surgery 2017;11(1):6-27.(In Russ.). DOI: 10.14341/serg201716-27.
Review
For citations:
Stanyakina E.E., Romanov I.S., Krylov A.S., Ryzhkov A.D., Ilkaev K.D., Bludov А.B., Kaspshik S.M. Possibilities of single photon emission tomography in the diagnosis of bone metastases in patients with disseminated medullary thyroid carcinoma (case report). Head and Neck Tumors (HNT). 2019;9(2):81-87. (In Russ.) https://doi.org/10.17650/2222-1468-2019-9-2-81-87