18F-fluoroethyltyrozine positron emission tomography combined with computed tomography and computed tomography perfusion in complex diagnostic of glial brain tumors
https://doi.org/10.17650/2222-1468-2019-9-4-24-31
Abstract
The study objective is to evaluate the diagnostic capabilities of complex method based on the use of 18 F-fluoroethyltyrozine positron emission tomography (PET) combined with computed tomography (CT) and CT perfusion in the differential diagnosis of glial brain tumors.
Materials and methods. One hundred and two patients with glial brain tumors were included in the study. Depending on the degree of malignancy patients were divided into 2 groups: group 1–38 (37.26 %) patients with grade I–II tumors; group 2–64 (62.74 %) patients with grade III–IV tumors. Perfusion CT was performed in 20 (52.6 %) patients from the group with grade I–II tumors and 37 (57.8 %) patients from the group with grade III–IV gliomas. The sensitivity and specificity of such indicators as the maximum standardized uptake value (maxSUV) and the tumor to brain ratio (TBR), in combination with CT perfusion indicators (cerebral blood flow (CBF), cerebral blood volume (CBV), vascular permeability (FED) were studied.
Results. The highest diagnostic accuracy was demonstrated by the following parameters: maxSUV 1 (sensitivity and specificity 81 and 82 %, threshold value 2.51, AUC 0.87); TBR 1 (sensitivity and specificity 90.6 and 81.6 %, threshold value 2.07, AUC 0.89). The comprehensive evaluation of CT perfusion and 18 F-fluoroethyltyrozine PET / CT parameters: sensitivity and specificity of TBR 1 + CBF – 97.1 and 94.4 %, respectively; TBR 1 + CBV – 96.6 and 94.4 %, respectively; TBR 1 + FED – 94.6 and 92.3 %, respectively.
Conclusion. According to results of obtained analysis, an increase in diagnostic accuracy was revealed for all studied parameters with complex use of two methods – 18 F-fluoroethyltyrozine PET / CT and CT perfusion, in differential diagnosis of glial brain tumors.
About the Authors
A. I. ProninRussian Federation
24 Kashirskoe Shosse, Moscow 115478
M. B. Dolgushin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
D. V. Sashin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
N. A. Meshcheryakova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
O. D. Ryzhova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
T. G. Gasparyan
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Bondy M.L., Scheurer M.E., Malmer B. et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008;113(7 Suppl):1953–68. DOI: 10.1002/cncr.23741.
2. Absalyamova O.V., Aleshin V.A., Anikeeva O.Yu. et al. Clinical recommendations for the diagnosis and treatment of patients with primary brain tumors. Moscow, 2014. Pp. 8–10. (In Russ.) DOI: 10.14341/ket2007346-8.
3. Gupta K., Salunke P. Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol 2012;138(12):1971–81. DOI: 10.1007/s00432-012-1323-y.
4. Wen P.Y., Kesari S. Malignant gliomas in adults. N Engl J Med 2008; 359(5):492–507. DOI: 10.1056/NEJMra0708126.
5. Stupp R., Mason W.P., van den Bent M.J. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987–96. DOI: 10.1056/NEJMoa043330.
6. Stupp R., Hegi M.E., Mason W.P. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTCNCIC trial. Lancet Oncol 2009;10(5):459–66. DOI: 10.1016/S1470-2045(09)70025-7.
7. Trufanov G.E., Rameshvili T.E., Dergunova N.I., Boykov I.V. Combined positron emission tomography and computed tomography (PET-CT) in the diagnosis of brain tumors. Saint Peterburg: Elbi-SPb, 2005. 94 p. (In Russ.)
8. Weise G., Stoll G. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant? Front Neurol 2012; 3:178. DOI: 10.3389/fneur.2012.00178.
9. Messa C., Bettinardi V., Picchio M. PET/ CT in diagnostic oncology. Q J Nucl Med Mol Imaging 2004;48(2):66–75.
10. Schӧder H., Yeung H.W., Gonen M. et al. Head and neck cancer: clinical usefulness and accuracy of PET/CT image fusion. Radiology 2004;231(1):65–72. DOI: 10.1148/radiol.2311030271.
11. Shinoura N., Nishijima M., Hara T. et al. Brain tumors: detection with C-11 choline PET. Radiology 1997;202(2):497–503. DOI: 10.1148/radiology.202.2.9015080.
12. Langen K.J., Jarosch M., Mühlensiepen H. et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 2003;30(5):501–8. DOI: 10.1016/s0969-8051(03)00023-4.
13. Kwee S.A., Ko J.P., Jiang C.S. et al. Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 2007;244(2):557–65. DOI: 10.1148/radiol.2442060898.
14. Wyss M.T., Spaeth N., Biollaz G. et al. Uptake of18 F-Fluorocholine,18 F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis. J Nucl Med 2007;48(4):608–14. DOI: 10.2967/jnumed.106.036251.
15. Hara T., Kosaka N., Shinoura N., Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 1997;38(6):842–7.
16. Galldiks N., Rapp M., Stoffels G. et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging 2013;40(1):22–33. DOI: 10.1007/s00259-012-2251-4.
17. Hutterer M., Nowosielski M., Putzer D. et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 2011;52(6): 856–64. DOI: 10.2967/jnumed.110.086645.
18. Unterrainer M., Suchorska B. Value of 18F-FET PET for chemotherapy monitoring in non-contrast enhancing gliomas. J Nucl Med 2016;57(Suppl 2):14.
19. Galldiks N., Stoffels G., Filss C. et al. The use of dynamic O-(2-18 F-fluoroethyl)l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol 2015;17(9):1293–300. DOI: 10.1093/neuonc/nov088.
20. Ceccon G., Lohmann P., Stoffels G. et al. Dynamic O-(2-18 F-fluoroethyl)-Ltyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol 2017;19(2):281–8. DOI: 10.1093/neuonc/now149.
21. Jain R., Ellika S.K., Scarpace L. et al. Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol 2008;29(4): 694–700. DOI: 10.3174/ajnr.A0899.
22. Di Nallo A.M., Vidiri A., Marzi S. et al. Quantitative analysis of CT-perfusion parameters in the evaluation of brain gliomas and metastases. J Exp Clin Cancer Res 2009;28:38. DOI: 10.1186/1756-9966-28-38.
23. Ahmad K., Elhameed A. Perfusion CT cerebral blood volume and permeability in low and high grades of brain glioma. Egyptain J Radiol Nucl Med 2012;43(3):449–56.
24. Ahmed R., Oborski M.J., Hwang M. et al. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 2014; 6:149–70. DOI: 10.2147/CMAR.S54726.
25. Jain R., Narang J., Gutierrez J. et al. Correlation of immunohistologic and perfusion vascular parameters with MR contrast enhancement using image-guided biopsy specimens in gliomas. Acad Radiol 2011;18(8):955–62. DOI: 10.1016/j.acra.2011.04.003.
26. Jain R., Gutierrez J., Narang J. et al. In vivo correlation of tumor blood volume and permeability with histologic and molecular angiogenic markers in gliomas. AJNR Am J Neuroradiol 2011;32(2):388–94. DOI: 10.3174/ajnr.A2280.
27. Silva A.C., Kim S.G., Garwood M. Imaging blood flow in brain tumors using arterial spin labeling. Magn Reson Med 2000;44(2):169–73. DOI: 10.1002/1522-2594 (200008)44: 2 < 169 :: aid-mrm 1 > 3.0. co; 2-u.
28. Filss C.P., Galldiks N., Stoffels G. et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/ MR imaging hybrid study in patients with brain tumors. J Nucl Med 2014;55(4):540–5. DOI: 10.2967/jnumed.113.129007.
Review
For citations:
Pronin A.I., Dolgushin M.B., Sashin D.V., Meshcheryakova N.A., Ryzhova O.D., Gasparyan T.G. 18F-fluoroethyltyrozine positron emission tomography combined with computed tomography and computed tomography perfusion in complex diagnostic of glial brain tumors. Head and Neck Tumors (HNT). 2019;9(4):24-31. (In Russ.) https://doi.org/10.17650/2222-1468-2019-9-4-24-31