Preview

Head and Neck Tumors (HNT)

Advanced search

Possibilities of magnetic resonance imaging in SWI mode in differential diagnosis of brain gliomas (G3–G4) and primary lymphomas

https://doi.org/10.17650/2222-1468-2020-10-2-38-45

Abstract

The study objective is to assess the possibilities of magnetic resonance imaging (MRI) in SWI (susceptibility weighted imaging) in the differential diagnosis of glial brain tumors and primary brain lymphomas.
Materials and methods. Fifty-four patients with brain tumors were studied (men – 27 (50 %), women – 27 (50 %)). Average age 57.9 years. Histological examination of the surgical material revealed the glial nature of tumors in 41 patients (26 of them with glioblastoma, anaplastic astrocytomas – 15), primary brain lymphomas – in 13 patients. Brain MRI was performed using tomographs with a magnetic field of 3 and 1.5 T. A semi-quantitative assessment of the data obtained in the SWI mode based on the classification of ITSS (intratumoral susceptibility signals), reflecting the severity of interstitial vascular architectonics and microbleeding.
Results. The degree of ITSS was 3 in glioblastomas (G4 ) in 26 (100 %) cases, in the structure of gliomas (G3 ) the ITSS values were 3 in 3 (20 %) cases, in the remaining 12 (80 %) cases – ITSS 2. In the group of primary brain lymphomas, the ITSS 1 was in 4 (30.7 %) cases, ITSS 0 was in 9 (69.3 %) cases.
Conclusion. MRI in SWI mode is a promising technique that allows one to quantify the degree of pathological changes in tumor vascular architectonics and intratumoral hemorrhages and has shown high specificity in the differential diagnosis of malignant gliomas and lymphomas of the brain, accompanied by active accumulation of contrast medium.

About the Authors

D. V. Sashin
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


M. B. Dolgushin
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


E. A. Kobyakova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


A. Kh. Bekyashev
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


A. S. Subbotin
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


E. A. Nechipay
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


D. S. Romanov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


N. A. Kozlov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


References

1. Никифоров Б.М., Мацко Д.Е. Опухоли головного мозга. СПб.: Питер, 2013. 320 с. [Nikiforov B.M., Matsko D.E. Brain tumors. Saint Petersburg: Piter, 2013. 320 p. (In Russ.)].

2. Волошин С.В., Криволапов Ю.А., Шуваев В.А. и др. Первичная диффузная В-клеточная крупноклеточная лимфома центральной нервной системы: современные представления о патогенезе, диагностике и принципах лечения. Вестник гематологии 2011;7(3):22–34. [Voloshin S.V., Krivolapov Yu.A., Shuvaev V.A. et al. Primary B-cell lymphoma of the central nervous system (PCLCS): modern concepts about pathogenesis, diagnostic and treatment. Vestnik gematologii = Messenger of hematology 2011;7(3):22–34. (In Russ.)].

3. Ding Y., Xing Z., Liu B. et al. Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastases using susceptibility-weighted imaging. Brain Behav 2014;4(6):841–9. DOI: 10.1002/brb3.288.

4. Dulak J., Józkowicz A. Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Curr Cancer Drug Targets 2005;5(8):579–94. DOI: 10.2174/156800905774932824.

5. Salven P., Teerenhovi L., Joensuu H. A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin’s lymphoma. Blood 1997;90(8):3167–72.

6. Rubenstein J., Fischbein N., Aldape K. et al. Hemorrhage and VEGF expression in a case of primary CNS lymphoma. J Neurooncol 2002;58(1):53–6. DOI: 10.1023/a:1015887312455.

7. Peters S., Knöß N., Wodarg F. et al. Glioblastomas vs. lymphomas: More diagnostic certainty by using susceptibility-weighted imaging (SWI). Rofo 2012;184:713–8. DOI: 10.1055/s-0032-1312862.

8. Takeushi H., Matsuda K., Kitai R. et al. Angiogenesis in primary central nervous system lymphoma. J Neurooncol 2007;84(2):141–5. DOI: 10.1007/s11060-007-9363-x.

9. Gasparotti R., Pinelli L., Liserre R. New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay. Insights Imaging 2011;2(3):335–47. DOI: 10.1007/s13244-011-0086-3.

10. Heymans S., Luttun A., Nuyens D. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999;5(10):1135–42. DOI: 10.1038/13459.

11. Mittal S., Wu Z., Neelavalli J., Haacke E.M. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 2009;30(2):232–52. DOI: 10.3174/ajnr.A1461.

12. Park S.M., Kim H.S., Jahng G.H. et al. Combination of high-resolution susceptibility-weighted imaging and the apparent diffusion coefficient: Added value to brain tumour imaging and clinical feasibility of non-contrast MRI at 3 T. Br J Radiol 2010;83(990):466–75. DOI: 10.1259/bjr/34304111.

13. Lee B.C., Vo K.D., Kido D.K. et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR Am J Neuroradiol 1999;20(7):1239–42.

14. Akter M., Hirai T., Hiai Y.et al. Detection of hemorrhagic hypointense foci in the brain on susceptibility-weighted imaging clinical and phantom studies. Acad Radiol 2007;14(9):1011–9. DOI: 10.1016/j.acra.2007.05.013.

15. Goos J.D.C., van der Flier W.M., Knol D.L. et al. Clinical relevance of improved microbleed detection by susceptibilityweighted magnetic resonance imaging. Stroke J Cereb Circ 2011;42(7):1894–900. DOI: 10.1161/STROKEAHA.110.599837.

16. Guo L.F., Wang G., Zhu X.Y. et al. Comparison of ESWAN, SWI-SPGR, and 2D T2*-weighted GRE sequence or depicting cerebral microbleeds. Clin Neuroradiol 2013;23(2):121–7. DOI: 10.1007/s00062-012-0185-7.

17. Cheng A.L., Batool S., McCreary C.R. et al. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Stroke J Cereb Circ 2013;44(10): 2782–6. DOI: 10.1161/STROKEAHA.113.002267.

18. Shams S., Martola J., Cavallin L. et al. SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? AJNR Am J Neuroradiol 2015;36(6): 1089–95. DOI: 10.3174/ajnr.A4248.

19. Park M.J. Kim H.S., Jahng G.H. et al. Semiquantitative assessment of intratumoral susceptibility signals using non-contrastenhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 2009; 30(7):1402–8. DOI: 10.3174/ajnr.A1593.

20. Radbruch A. Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging, Eur J Radiol 2013;82:552–6. DOI: 10.1016/j.ejrad.2012.11.002.

21. Aydin O., Buyukkaya R, Hakyemez B. Susceptibility imaging in glial tumor grading; using 3 Tesla magnetic resonance(MR) system and 32 channel head coil. Pol J Radiol 2017;1(82):179–87. DOI: 10.12659/PJR.900374.

22. Kickingereder P., Wiestler B., Sahm F. et al. Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibilityweighted MR imaging. Neuroradiol 2014;272(3):843–50. DOI: 10.1148/radiol.14132740.

23. Folkman J. Tumour angiogenesis. In: Cancer Medicine. Ontario: Decker, 2000. Pp. 132–152. DOI: 10.3322/canjclin.22.4.226.

24. Бывальцев В.А., Степанов И.А., Белых Е.Г.. Яруллина А.И. Молекулярные аспекты ангиогенеза в глиобластомах головного мозга. Вопросы онкологии 2017;63(1):19–27. [Byvaltsev V.A., Stepanov I.A., Belykh E.G., Yarullina A.I. Molecular aspects of angiogenesis in glioblastomas of the brain. Voprosy onkologii = Oncology Issues 2017;63(1):19–27. (In Russ.)].

25. Eiken H.M., Adams R.M. Dynamics of endothelial cell behaviour in sprouting angiogenesis. Curr Opin Cell Biol 2010;22(5):617–25. DOI: 10.1016/j.ceb.2010.08.010.

26. Feige J.J. Tumour angiogenesis: recent progress and remaining challenges. Bull Cancer 2010;97(11):1305–10. DOI: 10.1684/bdc.2010.1208.

27. Fischer I., Gagner J.-P., Law M. et al. Angiogenesis in gliomas. Biol Mol Pathophys Brain Pathol 2005;15:297–310. DOI: 10.1111/j.1750-3639.2005.tb00115.x.

28. Storkebaum E., Lambrechts D., Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. BioEssays 2004; 26:943–54. DOI: 10.1002/bies.20092.

29. Jin K., Zhu Y., Sun Y. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002;99(18):1946–50. DOI: 10.1073/pnas.182296499.

30. Li C., Ai B., Li Y. et al. Susceptibilityweighted imaging in grading brain astrocytomas. Eur J Radiol 2010;75(1):81–5. DOI: 10.1016/j.ejrad.2009.08.003.

31. Weiye L., Baoyin G., Jiecheng Y. Vasorin stimulates malignant progression and angiogenesis in glioma. Cancer Sci 2019;110(8): 2558–72. DOI: 10.1111/cas.14103.

32. Jain R.K., di Tomaso E., Dan G.D. et al. Angiogenesis in brain tumours. Nat Rev Neurosci 2007;(8):610–22. DOI: 10.1038/nrn2175.

33. Paulus W. Classification, pathogenesis and molecular pathology of primary CNS lymphomas. J Neurooncol 1999;43(3):203–8. DOI: 10.1023/a:1006242116122.

34. Gloger M., Menzel L., Grau M. et al. Lymphoma angiogenesis is orchestrated by noncanonical signaling pathways. Canc Res 2020;80(6):1316–29. DOI: 10.1158/0008-5472.CAN-19-1493.


Review

For citations:


Sashin D.V., Dolgushin M.B., Kobyakova E.A., Bekyashev A.Kh., Subbotin A.S., Nechipay E.A., Romanov D.S., Kozlov N.A. Possibilities of magnetic resonance imaging in SWI mode in differential diagnosis of brain gliomas (G3–G4) and primary lymphomas. Head and Neck Tumors (HNT). 2020;10(2):38-45. (In Russ.) https://doi.org/10.17650/2222-1468-2020-10-2-38-45

Views: 1609


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)