Preview

Head and Neck Tumors (HNT)

Advanced search

Chemotherapy with cetuximab in head and neck squamous cell carcinoma: immunological aspects and markers of treatment effectiveness in clinical practice

https://doi.org/10.17650/2222-1468-2024-14-1-16-30

Abstract

Introduction. Chemotherapy in combination with targeted therapy (CT + TT) using a monoclonal antibody against epidermal growth factor receptor (EGFR) cetuximab and subsequent maintenance targeted therapy (CT + TT/TT) is the leading 1st line therapy of recurrent/metastatic head and neck squamous cell carcinoma to achieve objective response irrespective of programmed cell death-ligand 1 (pD-L1) expression level. However, often in clinical practice patient profile does not match characteristics of patients included in registration studies. Therapy selection is based on massive advancement of the tumor, low performance status of the patient, use of various chemotherapy regimes which often decreases therapy effectiveness. This creates a necessity of identification of clinical markers of effectiveness based on the drug's pharmacodynamics and mechanism of action.

Aim. To analyze the effect of clinical characteristics, peripheral blood markers, and systemic inflammation on long-term results of CT + TT/TT with cetuximab in cancer of the mucosa of the head and neck.

Materials and methods. The prospective observational study performed at the Oncology Department with a course on thoracic surgery of the Kuban State Medical University, included 52 patients with head and neck squamous cell carcinoma receiving CT + TT/TT between 2020 and 2023. Clinical characteristics and results of peripheral blood tests were retrospectively analyzed, indices of inflammatory reaction prior to treatment and 12-16 weeks after CT + TT/TT with cetuximab were calculated. Statistical analysis was performed using the med Calc ver. 20.218 and IBM SPSS Statistics 22 software.

Results. CT + TT/TT with cetuximab significantly increased red blood cell count (RBC), lymphocyte-monocyte ratio (LMR), and decreased systemic inflammatory markers (SIM) (p <0.05) 12-16 weeks after the start of treatment. Statistically significant decrease in progression-free survival for baseline RBC <3.9 x 1012/L (area under the ROC-curve, AUC) = 0.780; 95 % confidence interval (CI) 0.616-0.944; p = 0.0008), RBC ≤3.8 x 1012/L 12-16 weeks after the start of therapy (AUC = 0.748; 95 % CI 0.554-0.941; p = 0.0120) was observed. Survival was negatively affected by LMR >3.27 after 12-16 weeks of therapy (AUC = 0.685; 95 % CI 0.486-0.885; p = 0.0691). median survival of patients after the start of CT + TT/TT with cetuximab was 28 months (95 % CI 17-48), progression-free survival was 8 months (95 % CI 5-36). For RBC count >3.8 x 1012/L 12-16 weeks after the start of therapy, risk of progression decreased by 79 % (hazard ratio 0.21; 95 % CI 0.07-0.62; p = 0.0047). Partial response after 12-16 weeks of CT + TT/TT decreased progression risk more than 4-fold (p <0.05). The model decreasing progression-free survival includes baseline RBC ≤3.9 x 109/L, RBC ≤3.8 x 109/L after 12-16 weeks of CT + TT/TT with cetuximab and absence of partial response per the Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1) (AUC = 0.792; 95 % CI 0.706-0.877; p = 0.0079).

Conclusion. for prediction of CT + TT/TT with cetuximab effectiveness in patients with head and neck squamous cell carcinoma, baseline characteristics of the peripheral blood and systemic inflammation can be used. Additionally, correlations between these characteristics 12-16 weeks after the start of therapy and treatment effectiveness were observed. Increased RBC as an anemia marker can be considered an indirect mechanism of EGFR signaling pathway blocking by cetuximab through decreased level of interleukin 6, marker of systemic inflammation, and factor of chronic disease anemias hepcidin. In patients with head and neck squamous cell carcinoma, maximal effectiveness of CT + TT/TT with cetuximab requires not only therapy personalization but also anemia correction.

About the Authors

A. I. Stukan
Kuban State Medical University, Ministry of Health of Russia; N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

4 Mitrofana Sedina St., Krasnodar 350063; 68 Leningradskaya St., Pesochny Settlement, Saint Petersburg 197758



S. I. Kutukova
City Clinical Oncological Dispensary; Academician I.P. Pavlov First St. Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

1 Malaya Sadovaya St., Saint Petersburg 191023; 6-8 L’va Tolstogo St., Saint Petersburg 197022



E. A. Nefedova
Kuban State Medical University, Ministry of Health of Russia; Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

4 Mitrofana Sedina St., Krasnodar 350063; 146 Dimitrova St., Krasnodar 350040



V. A. Porkhanov
Kuban State Medical University, Ministry of Health of Russia; Scientific Research Institute — Regional Clinical Hospital No. 1 named after Prof. S.V. Ochapovsky
Russian Federation

4 Mitrofana Sedina St., Krasnodar 350063; 1671st May St., Krasnodar 350086



V. N. Bodnya
Kuban State Medical University, Ministry of Health of Russia; Scientific Research Institute — Regional Clinical Hospital No. 1 named after Prof. S.V. Ochapovsky
Russian Federation

4 Mitrofana Sedina St., Krasnodar 350063; 1671st May St., Krasnodar 350086



T. Yu. Semiglazova
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia; I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia
Russian Federation

68 Leningradskaya St., Pesochny Settlement, Saint Petersburg 197758; 41 Kirochnaya St., Saint Petersburg 191015



N. A. Tsygan
Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

146 Dimitrova St., Krasnodar 350040



V. V. Kudrina
Kuban State Medical University, Ministry of Health of Russia; Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

4 Mitrofana Sedina St., Krasnodar 350063; 146 Dimitrova St., Krasnodar 350040



I. I. Aseeva
Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

146 Dimitrova St., Krasnodar 350040



Yu. Yu. Stefanova
Kuban State Medical University, Ministry of Health of Russia; Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

4 Mitrofana Sedina St., Krasnodar 350063; 146 Dimitrova St., Krasnodar 350040



A. A. Kurmanaliev
Clinical Oncological Dispensary No. 1, Ministry of Health of the Krasnodar Territory
Russian Federation

146 Dimitrova St., Krasnodar 350040



M. A. Chagiev
Kuban State Medical University, Ministry of Health of Russia
Russian Federation

4 Mitrofana Sedina St., Krasnodar 350063



References

1. Vermorken J.B., Trigo J., Hitt R. et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 2007;25(16):2171-7. DOI: 10.1200/jco.2006.06.7447

2. Langer C.J. Targeted therapy in head and neck cancer: state of the art 2007 and review of clinical applications. Cancer 2008;112(12):2635-45. DOI: 10.1002/cncr.23521

3. Guigay J., Auperin A., Fayette J. et al. Cetuximab, docetaxel, and cisplatin versus platinum, fluorouracil, and cetuximab as frst- line treatment in patients with recurrent or metastatic head and neck squamous-cell carcinoma (GORTEC 2014-01 TPExtreme): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 2021;22(4):463-75. DOI: 10.2139/ssrn.3700967

4. Mirabile A., Miceli R., Calderone R.G. et al. Prognostic factors in recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck 2019;41(6):1895-902. DOI: 10.1002/hed.25636

5. Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harbor Perspect Biol 2014;6(3):a008912. DOI: 10.1101/cshperspect.a008912

6. Yarden Y., Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012;12(8):553-63. DOI: 10.1038/nrc3309

7. Zhang X., Gureasko J., Shen K. et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006;125(6):1137-49. DOI: 10.1016/j.cell.2006.05.013

8. Lemmon M.A., Schlessinger J., Ferguson K.M. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harbor Perspect Biol 2014;6(4):a020768. DOI: 10.1101/cshperspect.a020768

9. Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141(7):1117-34. DOI: 10.1016/j.cell.2010.06.011

10. Trivedi S., Concha-Benavente F., Srivastava R.M. et al. Immune biomarkers of anti-EGFR monoclonal antibody therapy. Ann Oncol;41(5):678-84. DOI: 10.1093/annonc/mdu156

11. Li S., Schmitz K.R., Jeffrey P.D. et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005;7(4):301-11. DOI: 10.1016/j.ccr.2005.03.003

12. Bhat R., Watzl C.J.P. Serial killing of tumor cells by human natural killer cells - enhancement by therapeutic antibodies. PLoS One 2007;2(3):e326. DOI: 10.1371/journal.pone.0000326

13. Srivastava R.M., Lee S.C., Andrade Filho P.A. et al. Cetuximab- activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res 2013;19(7):1858-72. DOI: 10.1158/1078-0432.ccr-12-2426

14. Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012;12(4):253-68. DOI: 10.1038/nri3175

15. Ostrand R.S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol 2010;59(10):1593-600. DOI: 10.1007/s00262-010-0855-8

16. Ochando J.C., Chen S.H. Myeloid-derived suppressor cells in transplantation and cancer. Immunol Res 2012;54(1-3):275-85. DOI: 10.1007/s12026-012-8335-1

17. Gabitass R.F., Annels N.E., Stocken D.D. et al. Elevated myeloid- derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol 2011;60(10):1419-30. DOI: 10.1007/s00262-011-1028-0

18. Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141(1):39-51. DOI: 10.1016/j.cell.2010.03.014

19. Mantovani A., Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010;22(2):231-7. DOI: 10.1016/j.coi.2010.01.009

20. Liu C.Y., Wang Y.M., Wang C.L. et al. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(-)/CD15+/CD33+ myeloid-derived suppressor cells and CD8 + T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 2010;136(1):35-45. DOI: 10.1007/s00432-009-0634-0

21. Kusmartsev S., Nefedova Y., Yoder D., Gabrilovich D.I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004;172(2):989-99. DOI: 10.4049/jimmunol.172.2.989

22. Cheng P., Corzo C.A., Luetteke N. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 2008;205(10):2235-49. DOI: 10.1084/jem.20080132

23. Brandau S., Trellakis S., Bruderek K. et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 2011;89(2):311-7. DOI: 10.1189/jlb.0310162

24. Gallina G., Dolcetti L., Serafini P. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 2006;116(10):2777-90. DOI: 10.1172/jci28828

25. Bronte V., Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005;5(8):641-54. DOI: 10.1038/nri1668

26. Vasquez-Dunddel D., Pan F., Zeng Q. et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 2013;123(4):1580-9. DOI: 10.1172/jci60083

27. Guilliams M., Bruhns P., Saeys Y. et al. The function of Ғсү receptors in dendritic cells and macrophages. Nat Rev Immunol 2014;14:94-108. DOI: 10.1038/nri3582

28. Jing L., Srivastava R.V., Ettyreddy A. et al. Cetuximab ameliorates suppressive phenotypes of myeloid antigen presenting cells in head and neck cancer patients. J Immunother Cancer 2015;3:54. DOI: 10.1186/s40425-015-0097-6

29. Stukan A.I., Murashko R.A., Tsygan N.A. et al. Adaptive immune response in pathogenesis and treatment of head and neck squamous cell carcinoma: the influence of immunosuppression factors and gender. Opukholi golovy i shei = Head and Neck Tumors 2022;12(3):114-26. (In Russ.). DOI: 10.17650/2222-1468-2022-12-3-114-126

30. Kutukova S.I., Belyak N.P., Raskin G.A. et al. Systemic inflammation and immunological microenvironment in prognosis of solid tumors. Zlokachestvennye opuholi = Malignant tumours 2019;9(1):29-37. (In Russ.). DOI: 10.18027/2224-5057-2019-9-1-29-37

31. Zimmermann M., Zouhair A., Azria D. et al. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol 2006;1:11. DOI: 10.1186/1748-717x-1-11

32. Ray K., Ujvari B., Ramana V. et al. Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer. Cytokine Growth Factor Rev 2018;41:18-27. DOI: 10.1016/j.cytogfr.2018.04.002

33. Grellier N., Deray G., Yousfi A. et al. Carence martiale fonctionnelle, inflammation et fatigue apres radiotherapie Functional iron deficiency, inflammation and fatigue after radiotherapy. Bull Cancer 2015;102(9):780-5. DOI: 10. 1016/j.bulcan.2015.06.001

34. Bonner J.A., Harari P.M., Giralt J. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354(6):567-78. DOI: 10.1056/nejmoa053422

35. Ang K.K., Zhang Q., Rosenthal D.I. et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol 2014;32(27):2940-50. DOI: 1200/jco.2013.53.5633

36. Maahs L., Ghanem A.I., Gutta R. Cetuximab and anemia prevention in head and neck cancer patients undergoing radiotherapy BMC Cancer 2022;22:626. DOI: 10.1186/s12885-022-09708-9

37. Horsman M.R., Soresen B.S., Busk M. et al. Therapeutic modification of hypoxia. Clini Oncol 2021;33(11):492-509. DOI: 10.1016/j.clon.2021.08.014


Review

For citations:


Stukan A.I., Kutukova S.I., Nefedova E.A., Porkhanov V.A., Bodnya V.N., Semiglazova T.Yu., Tsygan N.A., Kudrina V.V., Aseeva I.I., Stefanova Yu.Yu., Kurmanaliev A.A., Chagiev M.A. Chemotherapy with cetuximab in head and neck squamous cell carcinoma: immunological aspects and markers of treatment effectiveness in clinical practice. Head and Neck Tumors (HNT). 2024;14(1):16-30. (In Russ.) https://doi.org/10.17650/2222-1468-2024-14-1-16-30

Views: 405


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-1468 (Print)
ISSN 2411-4634 (Online)